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PREFACE

This textbook and OER material cover tools and basic knowledge required to master the prerequisite

essentials of physics, mathematics, and statistics applied in transportation engineering. To our

knowledge, no such textbook currently exists to build the KSTs (Knowledge, Skills, Tools) for college

freshmen’ remedial courses required by most transportation engineering graduate programs that

admit non-engineers (e.g., PHYS 141, MATH 142, STAT 321 at California Polytechnic State

University, San Luis Obispo). The textbook modules are intended for students with undergraduate

degrees in planning and other less technical fields who are interested in pursuing transportation

careers where background engineering knowledge is required.
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ABOUT THIS PROJECT

The development of this textbook was made possible by the support of the U.S. Department of

Education, which in January 2021 awarded the three-year funded project: OERTransport: Enabling

Transportation Planning Professional Advancement to the University of Texas-Arlington (UTA) in

consortium with California Polytechnic State University (Cal Poly) and the University of South

Florida (USF).

This open textbook is part of the OERTransport collection of six transportation planning OER

textbooks and their respective graduate course implementation at each of the three collaborating

universities. The creation of each textbook benefitted from an independent industry advisory board’s

review and the savvy contributions of each institution’s OER librarians. For more information on

OERTransport: https://oertransportlab.uta.edu/

The contents of this textbook were developed under an Open Textbooks Pilot grant from the Fund

for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education. However,

those contents do not necessarily represent the policy of the Department of Education, and no

endorsement by the Federal Government should be assumed.
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ABOUT THE PUBLISHER

MAVS OPEN PRESS

If you are an instructor who is using this OER for a course, please let us know by filling out our OER

Adoption Form.

ABOUT MAVS OPEN PRESS

Creation of this resource was supported by Mavs Open Press, operated by the University of Texas at

Arlington Libraries (UTA Libraries). Mavs Open Press offers no-cost services for UTA faculty, staff,

and students who wish to openly publish their scholarship. The Libraries’ program provides human

and technological resources that empower our communities to publish new open access journals, to

convert traditional print journals to open access publications, and to create or adapt open educational

resources (OER). Our resources are openly licensed using Creative Commons licenses and are offered

in various e-book formats free of charge, which can be downloaded from the Mavs Open Press OER

catalog. Optional print copies of this text may be available through the UTA Bookstore or can be

purchased directly from XanEdu, Mavs Open Press’ exclusive print provider and distributor.

ABOUT OER

OER are free teaching and learning materials that are licensed to allow for revision and reuse. They

can be fully self-contained textbooks, videos, quizzes, learning modules, and more. OER are distinct

from public resources in that they permit others to use, copy, distribute, modify, or reuse the content.

The legal permission to modify and customize OER to meet the specific learning objectives of a

particular course make them a useful pedagogical tool.

ABOUT PRESSBOOKS

Pressbooks is an open source, web-based authoring tool based on WordPress, and it is the primary

tool that Mavs Open Press uses to create and adapt course materials. Pressbooks should not be used

with Internet Explorer. The following browsers are best to use with Pressbooks:

• Firefox

• Chrome

• Safari
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• Edge

CONTACT US

Information about open education at UTA is available online. Contact us at oer@uta.edu for other

inquires related to UTA Libraries publishing services.
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CHAPTER 1: TRIGONOMETRY FUNCTIONS AND GEOMETRIC MEASUREMENTS

Basic geometric and trigonometric functions and measurements are important in transportation

engineering for the functional design of facilities, including roadways, railroads, and intersection

sight distance.

Learning Objectives

• Recognize, rearrange, and simplify trigonometric functions

• Apply properties of triangles to solve for sides and angles

• Identify transportation engineering topics where the properties of triangles and trigonometric

functions are used

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

RECOGNIZE, REARRANGE, AND SIMPLIFY TRIGONOMETRIC FUNCTIONS

This section will explain basic manipulation of trigonometric functions with videos to help your

comprehension. Also, short problems to check your understanding are included.

RADIANS & DEGREES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-1

Check Your Understanding: Radians & Degrees
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-74

SOLVING SIMILAR TRIANGLES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-2

Check Your Understanding: Solving Similar Triangles

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-75

INTRODUCTION TO THE TRIGONOMETRIC RATIOS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-3

Check Your Understanding: Introduction to the Trigonometric Ratios
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-76

THE TRIG FUNCTIONS & RIGHT TRIANGLE TRIG RATIOS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-4

Check Your Understanding: The Trig Functions & Right Triangle Trig Ratios

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-77

SOLVING FOR A SIDE IN A RIGHT TRIANGLE USING THE TRIGONOMETRIC

RATIOS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-5

Check Your Understanding: Solving for a Side in a Right Triangle Using the Trigonometric
Ratios
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-78

THE INVERSE TRIGONOMETRIC FUNCTIONS

Introduction to Arcsine

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-6

Introduction to Arctangent

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-7

Introduction to Arccosine

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-8

Check Your Understanding: The Inverse Trigonometric Functions
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-79

LAW OF SINES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-9

Check Your Understanding: Law of Sines

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-80

LAW OF COSINES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-10

Check Your Understanding: Law of Cosines
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-81

Check Your Understanding: Recognize, Rearrange, and Simplify Trigonometric Functions
Overall

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#h5p-82

IDENTIFY PROPERTIES FOR CIRCULAR, PARABOLIC, AND SPIRAL CURVES

This section uses videos to understand the elements of simple circular curves, parabolic curves, and

spiral curves.

ELEMENTS OF SIMPLE CIRCULAR CURVES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-11

ELEMENTS OF PARABOLIC CURVES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-12
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ELEMENTS OF SPIRAL CURVES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=485#oembed-13

RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section will explain horizontal straight road sections, curves, and spiral transition sections that

connect them.

HORIZONTAL PROFILE

Transportation engineers apply the trigonometric functions discussed here in the process of

designing roads, and in particular, their horizontal profiles. The horizontal profile describes

the horizontal straight road sections, curves, and spiral transition sections (see Figure 1) that

connect them. The curves’ geometric design elements depend on principles discussed in the

following sections of this chapter: “Radians & Degrees”, “Solving Similar Triangles”,

“Introduction to the Trigonometric Ratios”, “The Trig Functions & Right Triangle Trig Ratios”,

“Solving for a Side in a Right Triangle Using the Trigonometric Ratios”, and “The Inverse

Trigonometric Functions”. For details of the design process (discussed in the Fundamentals of

Transportation Engineering course) please review the above section titled “Elements of Simple

Circular Curves”.

Figure 1: Horizontal profile (top view) of a road with significant horizontal
curvature.
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STOPPING SIGHT DISTANCE ON HORIZONTAL CURVES

The stopping sight distance (SSD) is the minimum distance a driver needs to perceive an

unusual situation, such as a deer crossing the road, and stop to avoid a collision. Along

horizontal curves, the driver’s line of sight may be obstructed by trees or other roadside

objects (see Figure 2). The formula for computing the minimum required SSD on horizontal

curves near sight obstructions is derived using the principles discussed in the following

sections: “Radians & Degrees”, “Solving Similar Triangles”, “Introduction to the Trigonometric

Ratios”, “The Trig Functions & Right Triangle Trig Ratios”, “Solving for a Side in a Right

Triangle Using the Trigonometric Ratios”, and “The Inverse Trigonometric Functions”.

Figure 2: Horizontal curve near
trees.

SIGHT TRIANGLES AT INTERSECTIONS

When approaching an intersection, drivers should be able to see it from a distance to be able to

stop in time before colliding with other approaching vehicles, pedestrians, and bicyclists. This

distance is computed by first constructing “sight triangles” similar to the one shown in Figure 3.

The sight triangle computations are made using the principle of similar triangles (see the section

titled “Solving Similar Triangles” above).
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Figure 3: Sample intersection sight triangle.

Key Takeaways

• Transportation engineers apply trigonometric functions to design roads and railroad tracks,

particularly their horizontal profiles. Knowledge of these functions is critical to ensuring that on

segments with horizontal curvature (or bend around the corner), road users have adequate sight

distance available to negotiate the curve on the travel way safely.

• The knowledge of trigonometry is also critical to solving intersection sight triangles and estimating

Intersection Sight Distance (ISD) required to safely navigate the intersections.

MEDIA ATTRIBUTIONS

Note: All Khan Academy content is available for free at (www.khanacademy.org).
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VIDEOS

• Video 1: Radians & Degrees by Khan Academy is licensed by Creative Commons

NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 2: Solving Similar Triangles by Khan Academy is licensed by Creative Commons

NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 3: Introduction to the Trigonometric Ratios by Khan Academy is licensed by Creative

Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 4: The Trig Functions & Right Triangle Trig Ratios by Khan Academy is licensed by

Creative Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 5: Solving for a Side in a Right Triangle Using the Trigonometric Ratios by Khan

Academy is licensed by Creative Commons NonCommercial-ShareAlike 3.0 United States (CC

BY-NC-SA 3.0 US)

• Video 6: Introduction to arcsine by Khan Academy is licensed by Creative Commons

NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 7: Introduction to arctangent by Khan Academy is licensed by Creative Commons

NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 8: Introduction to arccosine by Khan Academy is licensed by Creative Commons

NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 9: LAW OF SINES by Khan Academy is licensed by Creative Commons

NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 10: Law of Cosines by Khan Academy is licensed by Creative Commons

NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 11: Elements of Simple Circular Curves by Mr. Shashikant B. Gosavi, Assistant

Professor, Department of Civil Engineering, Walchand Institute of Technology, Solapur is

licensed by Attribution 3.0 Unported (CC BY 3.0)

• Video 12: Elements of Parabolic Curves by Mr. Ashok Kumar, Assistant Professor, Department

of Civil Engineering, Walchand Institute of Technology, Solapur is licensed by Attribution 3.0

Unported (CC BY 3.0)

• Video 13: Elements of Spiral Curves by Mr. Ashok Kumar, Assistant Professor, Department of

Civil Engineering, Walchand Institute of Technology, Solapur is licensed by Attribution 3.0

Unported (CC BY 3.0)

FIGURES

• Figure 1:

• Figure 2 is licensed by Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain

Dedication

• Figure 3 is licensed by Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain

Dedication
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CHAPTER 2: POLYNOMIAL, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

Polynomial, exponential, and logarithmic functions have several applications in transport

engineering. The exponential functions are used to model economic and population growth and

to estimate the compound interest formula. Simplifying polynomial expressions and solving

corresponding equations is helpful in the design of transportation facilities and understanding the

relationship(s) between flow, speed, and density on roadway segments. Logarithmic functions are also

sometimes used to model the relationship between traffic speed and density on a roadway segment,

where the speed decreases as the density increases. Understanding the properties of these functions

also provide a foundation to learn differential and integral calculus for these functions (See Chapter

4).

Learning Objectives

• Generate graphs and charts from exponential and logarithmic functions.

• Solve the exponential and logarithmic equations.

• Visualize polynomial functions on a graph or chart.

• Set up and solve polynomial equations.

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

GENERATE GRAPHS AND CHARTS FROM EXPONENTIAL AND LOGARITHMIC

FUNCTIONS

This section will explain exponential growth functions, exponential and logarithmic functions,

exponential graphs, graphing exponential growth and decay, and introduce you to logarithms with

videos to help your comprehension. Also, short problems to check your understanding are included.

INTRODUCTION TO EXPONENTIAL FUNCTIONS
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One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-1

Check Your Understanding: Exponential Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-130

EXPONENTIAL FUNCTION GRAPH

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-2

GRAPHING EXPONENTIAL FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-3

Check Your Understanding: Graphing Exponential Functions
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-154

GRAPHS OF EXPONENTIAL GROWTH

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-4

Check Your Understanding: Graphs of Exponential Growth

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-156

GRAPHING EXPONENTIAL GROWTH AND DECAY

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-5

Check Your Understanding: Graphing Exponential Growth and Decay
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-161

ANALYZING GRAPHS OF EXPONENTIAL FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-6

Check Your Understanding: Analyzing Graphs of Exponential Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-163

ANALYZING TABLES OF EXPONENTIAL FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-7

Check Your Understanding: Analyzing Tables of Exponential Functions

OERTRANSPORT: FUNDAMENTALS OF MATH, PHYSICS, AND STATISTICS FOR FUTURE TRANSPORTATION PROFESSIONALS 15



An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-134

INTRODUCTION TO LOGARITHMS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-8

Check Your Understanding: Logarithms

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-135

GRAPHS OF LOGARITHMIC FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-9

Check Your Understanding: Graphs of Logarithmic Functions
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-163

RELATIONSHIP BETWEEN EXPONENTIALS AND LOGARITHMS: GRAPHS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-10

RELATIONSHIP BETWEEN EXPONENTIALS AND LOGARITHMS: TABLES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-11

Check Your Understanding: Relationship Between Exponentials and Logarithms

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-137

SOLVE THE EXPONENTIAL AND LOGARITHMIC EQUATIONS

This section will explain how to solve exponential equations using exponent properties in both basic

and advanced problems with videos to help your comprehension. Also, short problems to check your

understanding are included.
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SOLVING EXPONENTIAL EQUATIONS USING EXPONENT PROPERTIES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-12

Check Your Understanding: Solving Exponential Equations Using Exponent Properties

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-138

SOLVING EXPONENTIAL EQUATIONS USING EXPONENT PROPERTIES

(ADVANCED)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-13

Check Your Understanding: Solving Exponential Equations Using Exponent Properties
(Advanced)

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-139
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INTRODUCTION TO LOGARITHM PROPERTIES

Please read this link on Introduction to Logarithm Properties.

Check Your Understanding: Introduction to Logarithm Properties

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-140

JUSTIFYING THE LOGARITHM PROPERTIES

Please read this link on Justifying the Logarithm Properties.

LOGARITHM CHANGE OF BASE RULE INTRODUCTION

Please read this link on Logarithm Change of Base Rule Introduction

Check Your Understanding: Justifying the Logarithm Properties & Logarithm Change of
Base Rule

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-141

LOGARITHMIC EQUATIONS: VARIABLE IN THE ARGUMENT

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-14
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Check Your Understanding: Logarithmic Equations: Variable in the Argument

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-142

LOGARITHMIC EQUATIONS: VARIABLE IN THE BASE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-15

Check Your Understanding: Logarithmic Equations: Variable in the Base

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-143

VISUALIZE POLYNOMIAL FUNCTIONS ON A GRAPH OR CHART

This section will explain how to graph polynomial functions with videos to help your comprehension.

Also, short problems to check your understanding are included.

GRAPHING POLYNOMIAL FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-16
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GRAPHING LAB – QUADRATICS AND POLYNOMIALS

If you’d like extra practice, please perform this lab.

GRAPHS OF POLYNOMIALS OVERVIEW

Please read this link on Graphs of Polynomials Overview

Check Your Understanding: Graphs of Polynomials

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-167

SET UP AND SOLVE POLYNOMIAL EQUATIONS

This section will explain how to set up and solve polynomials with variables, multiplying binomials

with polynomials, and solving polynomial equations by factoring with videos to help your

comprehension. Also, short problems to check your understanding are included.

ADDING AND SUBTRACTING POLYNOMIALS

Please read this link on Adding and Subtracting Polynomials

Check Your Understanding: Adding and Subtracting Polynomials

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-144

ADDING AND SUBTRACTING POLYNOMIALS WITH TWO VARIABLES

Please read this link on Adding and Subtracting Polynomials with Two Variables
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Check Your Understanding: Adding and Subtracting Polynomials with Two Variables

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-145

MULTIPLYING BINOMIALS BY POLYNOMIALS

Please read this link on Multiplying Binomials by Polynomials

Check Your Understanding: Multiplying Binomials by Polynomials

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-146

SOLVING POLYNOMIAL EQUATIONS BY FACTORING

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-17

FACTORING POLYNOMIALS BY TAKING A COMMON FACTOR

Please read this link on Factoring Polynomials by Taking a Common Factor

Check Your Understanding: Factoring Polynomials by Taking a Common Factor
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-147

DIVIDING POLYNOMIALS: LONG DIVISION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-18

Check Your Understanding: Dividing Polynomials: Long Division

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-148

SOLVING POLYNOMIAL EQUATIONS BY USING SYNTHETIC SUBSTITUTION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#oembed-19

Check Your Understanding: Solving Polynomial Equations by using Synthetic Substitution
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=577#h5p-149

RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section explains the relevance of engineering economics, traffic assignment, vertical curve

design, and traffic flow to transportation engineering coursework.

ENGINEERING ECONOMICS

Engineering economics is the application of economic analysis methods to quantify benefits

and costs to assist in the decision-making process. The decisions are related to transportation

engineering alternative designs (e.g., constructing a stop-controlled intersection or a

roundabout), prioritization of transportation projects, and maintenance budgets, among others.

In engineering economics, the time value of money (present value of money and future value

of money) and interest rate, also known as the discount rate, need to be considered to provide

meaningful Benefit-Cost B/C analysis. The analysis includes the compound interest formula

and the exponential growth of money. Exponential functions are also used to model the

depreciation of assets. Relevant exponential functions are described in the section titled

“Generate Graphs and Charts from Exponential and Logarithmic Functions” of this chapter.

TRAFFIC ASSIGNMENT

In the 4-step travel demand modeling process, traffic assignment is typically the last step, which

is used to estimate the number of trips on each route of the roadway network. A critical part of

traffic assignment is the Link Performance Function for each route, which defines travel time

as a function of the number of users on a route. Travel time increases exponentially as traffic

volume increases and is defined based on functional forms discussed in “Generate Graphs and

Charts from Exponential and Logarithmic Functions”.

VERTICAL CURVE DESIGN

In highway engineering, one of the fundamental design elements is the vertical profile (i.e.,

the upgrades, the downgrades, and the curves that connect consecutive roadway sections with

different grades, also known as the vertical curves). The vertical curve’s elevation is defined

as a quadratic equation, a special type of polynomial function (see “Solve the Exponential and

Logarithmic Equations” above).

RELATIONSHIP AMONG TRAFFIC FLOW, SPEED, AND DENSITY

In traffic flow theory for uninterrupted flow facilities (such as freeways), the fundamental
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relationship relates speed and density on the segment with the flow rate past a point on the

road segment. The decrease in speed as segment density increases may be modeled using

linear, polynomial, or logarithmic functions. The nature of speed-density functions may be

used to model relationships between the flow rate and density and/or the flow rate and speed.

Polynomial and Logarithmic functions discussed in this chapter are critical to this analysis.

Key Takeaways

• Exponential functions are useful for transportation practitioners in applying the compound interest

formula and modeling asset depreciation and population growth rate in engineering economics.

• Exponential functions are also used in defining link performance functions in traffic assignment to

model travel time as a function of road users on a network route

• Logarithmic functions are sometimes used to define speed as a function of roadway segment density.

• Polynomial functions are used in several applications, including the equation of parabolic curves

connecting two consecutive grades on a roadway segment.

• Speed-flow and flow-density relationships on roadway segments are often also defined as polynomial

functions.

MEDIA ATTRIBUTIONS

Note: All Khan Academy content is available for free at (www.khanacademy.org).

VIDEOS

• Video 1: Introduction to Exponential Functions by Khan Academy is licensed by Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 2: Exponential Function Graph by Khan Academy is licensed by Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 3: Graphing Exponential Functions by Khan Academy is licensed by Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 4: Graphs of Exponential Growth by Khan Academy is licensed by Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 5: Graphing Exponential Growth and Decay by Khan Academy is licensed by Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 6: Analyzing Graphs of Exponential Functions by Khan Academy is licensed by Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 7: Analyzing Tables of Exponential Functions by Khan Academy is licensed by Creative
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Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 8: Introduction to Logarithms by Khan Academy is licensed by Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 9: Graphs of Logarithmic Functions by Khan Academy is licensed by Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 10: Relationship Between Exponentials and Logarithms: Graphs by Khan Academy is

licensed by Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC

BY-NC-SA 3.0 US)

• Video 11: Relationship Between Exponentials and Logarithms: Tables by Khan Academy is

licensed by Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC

BY-NC-SA 3.0 US)

• Video 12: Solving Exponential Equations Using Exponent Properties by Khan Academy is

licensed by Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC

BY-NC-SA 3.0 US)

• Video 13: Solving Exponential Equations Using Exponent Properties (Advanced) by Khan

Academy is licensed by Creative Commons Attribution-NonCommercial-ShareAlike 3.0

United States (CC BY-NC-SA 3.0 US)

• Video 14: Logarithmic Equations: Variable in the Argument by Khan Academy is licensed by

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA

3.0 US)

• Video 15: Logarithmic Equations: Variable in the Base by Khan Academy is licensed by

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA

3.0 US)

• Video 16: Graphing Polynomial Functions by Michael Pemberton is licensed by Creative

Commons Attribution 3.0 Unported (CC BY 3.0)

• Video 17: Solving Polynomial Equations by Factoring by Keith Mann is licensed by Creative

Commons Attribution 3.0 Unported (CC BY 3.0)

• Video 18: Dividing Polynomials: Long Division by Khan Academy is licensed by Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 19: Solving Polynomial Equations by using Synthetic Substitution by Keith Mann is

licensed by Creative Commons Attribution 3.0 Unported (CC BY 3.0)
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CHAPTER 3: SYSTEMS OF LINEAR EQUATIONS

The ability to solve systems of multiple equations is a critical component of the introductory

transportation course. Systems of equations are helpful in several key transportation analyses,

including travel demand estimation (e.g., traffic assignment), design (e.g., roadway alignment), and

operations (e.g., speed-density relationships). This chapter highlights how to solve systems of

equations with two variables, three variables, and when no solution occurs. It will also explain how to

use Microsoft Excel to solve system equations.

Learning Objectives

• Solve a system of equations of up to three variables.

• Implement solving equations up to five variables in Microsoft Excel.

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

SOLVING SYSTEMS OF EQUATIONS WITH TWO VARIABLES

In this section, you will learn how to setup a system of equations and solve linear equations by reading

each description along with watching the videos. Also, short problems to check your understanding

are included.

HOW TO SET UP A SYSTEM OF EQUATIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-1

Check Your Understanding: How to Set Up a System of Equations
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-64

HOW TO SOLVE SYSTEMS OF EQUATIONS GRAPHICALLY

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-2

Check Your Understanding: How to Solve Systems of Equations Graphically

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-65

TESTING A SOLUTION TO A SYSTEM OF EQUATIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-3

Check Your Understanding: Testing a Solution to a System of Equations
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-66

SOLVING SYSTEM OF EQUATIONS WITH SUBSTITUTION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-4

Check Your Understanding: Solving System of Equations with Substitution

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-67

SOLVING SYSTEMS OF EQUATIONS WITH ELIMINATION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-5

Check Your Understanding: Solving Systems of Equations with Elimination
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-68

SOLVING SYSTEMS OF EQUATIONS WITH THREE VARIABLES

In this section, you will learn how to set up a system of equations with three variables and solve a

system of equations when no solution occurs by watching the videos. Short problems to check your

understanding are included.

INTRODUCTION TO LINEAR SYSTEMS WITH THREE VARIABLES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-6

SOLVING LINEAR SYSTEMS WITH THREE VARIABLES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-7

Check Your Understanding: Solving Linear Systems with Three Variables

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-69
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SOLVING LINEAR SYSTEMS WITH THREE VARIABLES: NO SOLUTION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-8

Check Your Understanding: Solving Linear Systems with Three Variables: No Solution

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-70

SYSTEMS OF EQUATIONS IN MICROSOFT EXCEL

In this section, you will learn how to set up a system of equations using Microsoft Excel and matrices

and how to use the Microsoft Excel solver tool by watching the videos. Short problems to check your

understanding are included.

SOLVING SYSTEMS OF EQUATIONS USING MATRICES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-9

Check Your Understanding: Solving Systems of Equations Using Matrices
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-71

SOLVING SYSTEM OF EQUATIONS USING EXCEL

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-10

Check Your Understanding: Solving System of Equations Using Excel

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-72

HOW TO USE THE SOLVER TOOL IN EXCEL TO SOLVE SYSTEMS OF LINEAR

EQUATIONS IN ALGEBRA

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#oembed-11

Check Your Understanding: How to Use the Solver Tool in Excel to Solve Systems of Linear
Equations in Algebra
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=477#h5p-73

RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section explains the relevance of traffic assignment and operation along with highway design to

transportation engineering coursework.

TRAFFIC ASSIGNMENT

In travel demand modeling process, the last step is the traffic assignment for routes, which

involves estimating the number of trips made on each route on the roadway network. Two

commonly applied traffic assignment approaches, which involve solving a system of equations,

are the user equilibrium (UE) and system optimal (SO) assignments. For simple UE problems

helpful in conceptual understanding of these approaches, the system of equations is typically

linear. The number of variables to solve for depends on the number of routes being considered

for traffic assignment. The reader is referred to the above section titled “Solving Systems of

Equations with Two Variables” for solving a system of linear equations with two variables

and the section titled “Systems of Equations in Microsoft Excel” for solving a system of linear

equations with three variables. For solving a system with more than three variables one requires

use of computer-based tools which are discussed in “Systems of Equations in Microsoft Excel”.

HIGHWAY DESIGN

Analysis and design of roadway (or railway) elements, particularly horizontal alignment and

vertical profiles, often require solving a system of equations. These equations are set up based

on the geometric constraints of the design. For example, the roadway elevation at a certain

location may be fixed due to an intersecting element. These constraints are used to set up

system of simultaneous equations that require the use of methods discussed in the three

previous sections in this chapter for solving them.

TRAFFIC OPERATIONS

The relationships between highway speed, lane density (a measure of congestion), and traffic

flow (number of vehicles past a point) are governed by a universal relationship of uninterrupted

flow, i.e., flow rate is a multiple of speed and density. In addition, different segments are

characterized by certain relationships between any of the variable pairs (i.e., speed-density;

speed-flow; or flow-density). These relationships help set up equations for key parameters for

roadway segments such as capacity flow rate, jam density, and free flow speed.
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Key Takeaways

• There are two main approaches to traffic assignment in the travel demand modeling process: user

equilibrium (UE) and system optimal (SO). Both of these approaches involve solving a system of

equations to determine the number of trips that will be made on each route.

• In highway design equations that help ensure that the final design meets all necessary requirements

and constraints need to be solved using the methods described in the chapter.

• In traffic operations, different segments of roadways with uninterrupted flow may have different

relationships between speed, flow, and density, and these relationships can be used to set up equations

for important parameters such as capacity flow rate, jam density, and free flow speed.

MEDIA ATTRIBUTIONS

Note: All Khan Academy content is available for free at (www.khanacademy.org).

VIDEOS

• Video 1: “How to set up a system of equations” by Khan Academy is licensed by Creative

Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 2: “How to solve systems of equations graphically” by Khan Academy is licensed by

Creative Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 3: “Testing a solution to a system of equations” by Khan Academy is licensed by Creative

Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 4: Solving System of Equations with Substitution by Khan Academy is licensed by

Creative Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 5: “Solving Systems of Equations with Elimination” by Khan Academy is licensed by

Creative Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 6: “Introduction to Linear Systems with Three Variables” by Khan Academy is licensed

by Creative Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 7: “Solving Linear Systems with Three Variables” by Khan Academy is licensed by

Creative Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 8: “Solving Linear Systems with Three Variables: No Solution” by Khan Academy is

licensed by Creative Commons NonCommercial-ShareAlike 3.0 United States (CC BY-NC-SA

3.0 US)

• Video 9: “Using Matrices to Solve Systems of Linear Equations” by Linda Green is licensed by

Creative Commons Attribution 3.0 Unported (CC BY 3.0)

• Video 10: “Solving System of Equations Using Excel” by Roel Van de Paar is licensed by
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Creative Commons Attribution 3.0 Unported (CC BY 3.0)

• Video 11: How to Use the Solver Tool in Excel to Solve Systems of Linear Equations in Algebra

by Rebecca Ong is licensed by Creative Commons Attribution 3.0 Unported (CC BY 3.0)
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CHAPTER 4: CALCULUS – INTERPRETATION AND METHODS FOR

INTEGRATION AND DIFFERENTIATION

Knowing the interpretation of derivatives helps in understanding the origin of formulas for

estimating values for roadway elevation along the vertical curve. Understanding derivatives as a

rate of change can also help with traffic operations (e.g., capacity as a maximum flow point) and

transportation economics (e.g., marginal costs and congestion pricing). Integrals are used to estimate

the area under a given curve. This property of integrals is used in estimating earthwork volumes and

quantifying aggregate delays at intersections or roadway segments with incidents.

Learning Objectives

• Interpret derivatives as the rate of change.

• Differentiate various functions with single variables.

• Familiarize oneself with the rules and processes (e.g., chain rule, multiplication rule) of derivation.

• Use the integration method for estimating the area under a curve.

• Describe the process of integration and differentiation in correspondence with each other.

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

INTERPRET DERIVATIVES AS THE RATE OF CHANGE

In this section, you will learn about derivatives, tangent slopes, tangent lines, quotient rule, chain

rule and power rule by watching the videos. Also, short problems to check your understanding are

included.

INTERPRETING DERIVATIVES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-1
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DERIVATIVE AS SLOPE OF CURVE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-2

Check Your Understanding: Interpreting Derivatives & Derivative as Slope of Curve

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-83

THE DERIVATIVE AS SLOPE OF TANGENT LINE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-3

Check Your Understanding: The Derivative as Slope of Tangent Line

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-84
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TANGENT SLOPE AS INSTANTANEOUS RATE OF CHANGE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-4

Check Your Understanding: Tangent Slope as Instantaneous Rate of Change

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-85

APPROXIMATING INSTANTANEOUS RATE OF CHANGE WITH AVERAGE RATE OF

CHANGE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-5

FAMILIARIZE ONESELF WITH THE RULES AND PROCESSES (E.G., CHAIN RULE,

MULTIPLICATION RULE) OF DERIVATION

BASIC DERIVATIVE RULES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-6
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BASIC DERIVATIVE RULES (PART 2)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-7

Check Your Understanding: Basic Derivative Rules

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-86

PRODUCT RULE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-8

Check Your Understanding: Product Rule

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-87
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QUOTIENT RULE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-9

Check Your Understanding: Quotient Rule

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-88

CHAIN RULE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-10

Check Your Understanding: Chain Rule

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-89
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THE POWER RULE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-11

Check Your Understanding: The Power Rule

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-90

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-12

Check Your Understanding: Derivatives of Trigonometric Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-91

DIFFERENTIATE VARIOUS FUNCTIONS WITH SINGLE VARIABLES

In this section, you will learn how to differentiate various functions, products, quotients, rational
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functions, trigonomic functions, and logarithmic by watching the videos. Also, short problems to

check your understanding are included.

DIFFERENTIABILITY AT A POINT: ALGEBRAIC

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-13

Check Your Understanding: Differentiability at a Point; Algebraic

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-92

DIFFERENTIATING POLYNOMIALS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-14

Check Your Understanding: Differentiating Polynomials

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-93
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FRACTIONAL POWERS DIFFERENTIATION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-15

Check Your Understanding: Fractional Powers Differentiation

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-94

RADICAL FUNCTIONS DIFFERENTIATION INTRODUCTION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-16

WORKED EXAMPLE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-17

Check Your Understanding: Radical Functions Differentiation
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-95

DIFFERENTIATING PRODUCTS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-18

Check Your Understanding: Differentiating Products

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-96

DIFFERENTIATE QUOTIENTS

Please read this link on differentiate quotients.

Check Your Understanding: Differentiate Quotients

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-97
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DIFFERENTIATING RATIONAL FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-19

Check Your Understanding: Differentiating Rational Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-98

DIFFERENTIATE TRIGONOMETRIC FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-20

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-39

Check Your Understanding: Differentiate Trigonometric Functions
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-99

DIFFERENTIATE EXPONENTIAL FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-21

Check Your Understanding: Differentiate Exponential Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-100

DIFFERENTIATE LOGARITHMIC FUNCTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-40

Check Your Understanding: Differentiate Logarithmic Functions
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-101

DIFFERENTIATING USING MULTIPLE RULES

Common Derivatives Review

Please read this link on common derivatives.

Derivative Rules Review

Check Your Understanding: Differentiating Using Multiple Rules

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-102

INTEGRALS OF COMMON FUNCTIONS

In this section, you will learn about indefinite integrals of sin(x), cos(x), and ex and definite integrals

functions, and U-substitution exponential function by watching the videos. Also, short problems to

check your understanding are included.

INDEFINITE INTEGRALS OF COMMON FUNCTIONS

Indefinite Integral of 1/x

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-22
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Check Your Understanding: Indefinite Integral of 1/x

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-103

Indefinite Integrals of sin(x), cos(x), and ex

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-23

Check Your Understanding: Indefinite Integrals of sin(x), cos(x), and and ex

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-104

DEFINITE INTEGRALS OF COMMON FUNCTIONS

Reverse Power Rule

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-24

Check Your Understanding: Reverse Power Rule
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-105

Rational Functions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-25

Check Your Understanding: Rational Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-106

Radical Functions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-26

Check Your Understanding: Radical Functions
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-107

Trig Functions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-27

Check Your Understanding: Trig Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-108

Natural Logs

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-28

Check Your Understanding: Natural Logs
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-109

Absolute Value Functions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-29

Check Your Understanding: Absolute Value Functions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-110

Piecewise Functions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-30

Check Your Understanding: Piecewise Functions
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-111

Integrating with U-Substitution

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-31

U-Substitution: Definite Integral of Exponential Function

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-32

Check Your Understanding: Integrating with U-Substitution

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-112

USE THE INTEGRATION METHOD FOR ESTIMATING THE AREA UNDER A CURVE

In this section, you will learn about integral calculus, definite integrals, and the Riemann calculus

technique by watching the videos. Also, short problems to check your understanding are included.
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INTRODUCTION TO INTEGRAL CALCULUS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-33

INTRODUCTION TO DEFINITE INTEGRALS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-34

INTRODUCTION TO RIEMANN APPROXIMATION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-35

Riemann Sums Review

Go to this link to read information on Riemann Sums.

Check Your Understanding: Riemann Approximation

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-113
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DEFINITE INTEGRAL AS THE LIMIT OF A RIEMANN SUM

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-36

Check Your Understanding: Definite Integral as the Limit of a Riemann Sum

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-114

FINDING AREA UNDER A CURVE USING INTEGRATION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-37

Check Your Understanding: Finding Area Under a Curve Using Integration

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-115
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DESCRIBE THE PROCESS OF INTEGRATION AND DIFFERENTIATION IN

CORRESPONDENCE WITH EACH OTHER

THE FUNDAMENTAL THEOREM OF CALCULUS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#oembed-38

Check Your Understanding: The Fundamental Theorem of Calculus

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=497#h5p-116

RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section explains the relevance of designing vertical curves, estimating congestion pricing

schedules, traffic operations and roadway capacity, and estimating aggregate delays in transportation

engineering coursework.

DESIGN OF VERTICAL CURVES

In roadway design, one grade or slope is connected with the next grade (For example, an

upgrade of 3% and a downgrade of 2%) using a parabolic curve defined by a quadratic equation.

First-order derivatives of these equations are used to define the highest or lowest point on

these curves. If the road is being transitioned from an uphill to a downhill (or vice versa),

then the highest point (or lowest point) also represents the point at which the slope is zero.

Furthermore, the second derivative of the quadratic equation is a constant, i.e., independent

of one’s location on the curve. It provides for a smooth transition at a constant rate between

the two grades. In this chapter, the sections titled “Interpret Derivatives as the Rate of Change”

and “Differentiate Various Functions with Single Variables” provided the details on materials

relevant to differentiating polynomials.

ESTIMATING CONGESTION PRICING SCHEDULES

The idea of congestion pricing is to direct roadway users to use transportation network

elements (i.e., routes) that would minimize costs (in the form of travel times) for all road users.
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Developing a fundamental understanding of this idea requires the first-order differential of the

function for the costs incurred by all road users to be set to zero. In this chapter, the sections

titled “Interpret Derivatives as the Rate of Change” and “Differentiate Various Functions with

Single Variables” provide the details on the relevant materials.

TRAFFIC OPERATIONS AND ROADWAY CAPACITY

Roadway capacity is defined as the maximum flow rate across a point on the roadway segment.

It is defined based on the maxima of speed-flow or speed-density relationships. The maxima is

found by setting the first derivative of a speed-density (or speed-flow) relationship to zero. In

this chapter, the sections titled “Interpret Derivatives as the Rate of Change” and “Differentiate

Various Functions with Single Variables” provide the relevant background for this application.

EARTHWORK VOLUMES

Roadway construction often requires earthwork, i.e., the addition or removal of material from

the sites. The design process yields the roadway elevation and cross-section along a segment.

These point locations are then used to estimate the aggregate earthwork volume using the

principles described in the section titled “Use the Integration Method for Estimating the Area

Under a Curve” of this chapter.

ESTIMATING AGGREGATE DELAYS

The estimation of aggregate delays requires the estimation of the area under the curve for the

input-output diagrams. These diagrams have time on the x-axis and the number of road users

entering/exiting a roadway location on the y-axis. The time of entrance for a road user defies

the input curve, while the time of exit defines the output curve. The area between the two curves

defines the aggregate delay for the roadway entity under consideration (i.e., an intersection or

roadway segment). The above section titled “Use the Integration Method for Estimating the

Area Under a Curve” provides the details needed for this chapter.

KEY TAKEAWAYS

Key Takeaways

• The interpretation of first-order derivative as a rate of change and definition of maxima or minima of

function as points where this derivative is equal to zero is critical to several transport applications. It is

used in roadway design for a smooth transition between grades, minimization of total user costs via

congestion pricing, and estimating roadway capacity based on speed-flow or flow-density

relationships.

• Integration of a function over a defined interval may be interpreted as the area under the curve. This

interpretation is used to estimate the volume of earthwork required, which is a common aspect of

roadway construction. This information is important for anticipating the resources and equipment

needed for planning and budgeting purposes. The same interpretation of integral as area under the

OERTRANSPORT: FUNDAMENTALS OF MATH, PHYSICS, AND STATISTICS FOR FUTURE TRANSPORTATION PROFESSIONALS 57



curve is used to estimate the area under the input-output diagrams in traffic operations to estimate

aggregate delay on intersections and roadway locations as well

MEDIA ATTRIBUTIONS

Note: All Khan Academy content is available for free at (www.khanacademy.org).

VIDEOS

• Video 1: Interpreting Derivatives by Linda Green is licensed by Creative Commons Attribution

3.0 Unported (CC BY 3.0)

• Video 2: Derivative as Slope of Curve by Khan Academy is licensed by
Creative Commons NonCommercial-ShareAlike 3.0 United States
(CC BY-NC-SA 3.0 US)

• Video 3: The Derivative as Slope of Tangent Line by Khan Academy is licensed by
Creative Commons NonCommercial-ShareAlike 3.0 United States
(CC BY-NC-SA 3.0 US)

• Video 4: Tangent Slope as Instantaneous Rate of Change by Khan Academy is
licensed by Creative Commons NonCommercial-ShareAlike 3.0
United States (CC BY-NC-SA 3.0 US)

• Video 5: Approximating Instantaneous Rate of Change with Average Rate of Change by
Khan Academy is licensed by Creative Commons NonCommercial-
ShareAlike 3.0 United States (CC BY-NC-SA 3.0 US)

• Video 6: Basic Derivative Rules by Khan Academy is licensed by Creative
Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
NC-SA 3.0 US)

• Video 7: Basic Derivative Rules (Part 2) by Khan Academy is licensed by
Creative Commons NonCommercial-ShareAlike 3.0 United States
(CC BY-NC-SA 3.0 US)

• Video 8: Product Rule by Khan Academy is licensed by Creative
Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
NC-SA 3.0 US)

• Video 9: Quotient Rule by Khan Academy is licensed by Creative
Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
NC-SA 3.0 US)

• Video 10: Chain Rule by Khan Academy is licensed by Creative
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Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
NC-SA 3.0 US)

• Video 11: The Power Rule by Khan Academy is licensed by Creative
Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
NC-SA 3.0 US)

• Video 12: Derivatives of Trigonometric Functions by Tyler Wallace is licensed by Creative

Commons Attribution 3.0 Unported (CC BY 3.0)

• Video 13: Differentiability at a Point: Algebraic by Khan Academy is licensed by
Creative Commons NonCommercial-ShareAlike 3.0 United States
(CC BY-NC-SA 3.0 US)

• Video 14: Differentiating Polynomials by Khan Academy is licensed by
Creative Commons NonCommercial-ShareAlike 3.0 United States
(CC BY-NC-SA 3.0 US)

• Video 15: Fractional Powers Differentiation by Khan Academy is licensed by
Creative Commons NonCommercial-ShareAlike 3.0 United States
(CC BY-NC-SA 3.0 US)

• Video 16: Radical Functions Differentiation Introduction by Khan Academy is
licensed by Creative Commons NonCommercial-ShareAlike 3.0
United States (CC BY-NC-SA 3.0 US)

• Video 17: Worked Example by Khan Academy is licensed by Creative
Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
NC-SA 3.0 US)

• Video 18: Differentiating Products by Khan Academy is licensed by Creative
Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
NC-SA 3.0 US)

• Video 19: Differentiate Quotients by Khan Academy is licensed by Creative
Commons NonCommercial-ShareAlike 3.0 United States (CC BY-
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CHAPTER 5: MOTION AND FORCES

Basic elements of accelerated motion and motion at constant speed help estimate braking distance

and safe travel speeds. Concepts of motion along a straight line are also helpful in estimating

headways and flow rates on the facilities. Accelerated motion along a circular path provides a

conceptual understanding of roadway superelevation (or banking; also see Chapter 6).

This chapter also describes forces acting on static objects. An understanding of friction forces and

normal reactions is critical to transportation infrastructure design. The gravity model is useful as

a prerequisite to understanding the dynamics of travel demand (trip distribution between traffic

analysis zones (TAZs)).

Learning Objectives

• Describe the gravity model

• Estimate the friction force and Normal Reaction on a static object

• Describe the motion of an object in the graphic form through the time-space diagram

• Use kinematic equations to solve for displacement, time, velocity, and acceleration of an object.

• Describe the motion of an object along a circular path

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

UNITS AND MEASUREMENTS

PHYSICAL QUANTITIES AND UNITS

We define a physical quantity either by specifying how it is measured or by stating how it is

calculated from other measurements. For example, we define distance and time by specifying

methods for measuring them, whereas we define average speed by stating that it is calculated as

distance traveled divided by time of travel.

Measurements of physical quantities are expressed in terms of units, which are standardized

values. For example, the length of a race, which is a physical quantity, can be expressed in

units of meters (for sprinters) or kilometers (for distance runners). Without standardized units,
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it would be extremely difficult for scientists to express and compare measured values in a

meaningful way.

There are two major systems of units used in the world: SI units (also known as the metric

system) and English units (also known as the customary or imperial system). English units were

historically used in nations once ruled by the British Empire and are still widely used in the

United States. Virtually every other country in the world now uses SI units as the standard; the

metric system is also the standard system agreed upon by scientists and mathematicians. The

acronym “SI” is derived from the French Système International.

SI UNITS OF TIME, LENGTH, AND MASS

SI units are part of the metric system. Metric systems have the advantage that conversions of

units involve base-10 number system. There are 100 centimeters in a meter, 1000 meters in

a kilometer, and so on. In nonmetric systems, such as the system of U.S. customary units, the

relationships are not as simple—there are 12 inches in a foot, 5280 feet in a mile, and so on.

Length Mass Time

Meter (m) Kilogram (kg) Second (s)

It is often necessary to convert from one type of unit to another. Let us consider a simple

example of how to convert units. Let us say that we want to convert 80 meters (m) to kilometers

(km). The first thing to do is to list the units that you have and the units that you want to convert

to. In this case, we have units in meters, and we want to convert to kilometers.

Next, we need to determine a conversion factor relating meters to kilometers. A conversion

factor is a ratio expressing how many of one unit are equal to another unit. For example, there

are 12 inches in 1 foot, 100 centimeters in 1 meter, 60 seconds in 1 minute, and so on. In this

case, we know that there are 1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply

them by the conversion factor so that the units cancel out, as shown:

Note that the “m” unit cancels, leaving only the desired “km” unit. You can use this method to

convert between any types of units.

DISPLACEMENT

Position:

To describe the motion of an object, you must first be able to describe its position—where it is

at any particular time. More precisely, you need to specify its position relative to a convenient

reference frame. Earth is often used as a reference frame, and we often describe the position of
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an object as it relates to stationary objects in that reference frame. For example, a rocket launch

would be described in terms of the position of the rocket with respect to the Earth as a whole,

while a professor’s position could be described in terms of where she is in relation to the nearby

white board. (See Figure 1). In other cases, we use reference frames that are not stationary but

are in motion relative to the Earth. To describe the position of a person in an airplane, for

example, we use the airplane, not the Earth, as the reference frame. (See Figure 2).

Figure 1: A professor paces left and right while lecturing. Her position relative to the blackboard is given
by x. The displacement of the professor relative to the blackboard is represented by an arrow
pointing to the right.
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Figure 2: A passenger moves from his seat to the back of the plane. His location relative to the
airplane is given by x. The −4 m displacement of the passenger relative to the plane is represented
by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is
twice as long as the arrow representing the displacement of the professor (he moves twice as far)
in Figure 1.

Displacement:

If an object moves relative to a reference frame (for example, if a professor moves to the right

relative to a white board or a passenger moves toward the rear of an airplane), then the object’s

position changes. This change in position is known as displacement. The word “displacement”

implies that an object has moved or has been displaced.

Displacement is the change in position of an object:

Where is displacement, is the final position, and is the initial position.

The Greek letter (delta) means “change in” whatever quantity follows it; thus, means

change in position. Always solve for displacement by subtracting initial position from final

position .

Note that the SI unit for displacement is the meter (m), but sometimes kilometers, miles, feet,

and other units of length are used. Keep in mind that when units other than the meter are used

in a problem, you may need to convert them into meters to complete the calculation.

Note that displacement has a direction as well as a magnitude. The professor’s displacement is

2.0 m to the right, and the airline passenger’s displacement is 4.0 m toward the rear. In one-

dimensional motion, direction can be specified with a plus or minus sign. When you begin a
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problem, you should select which direction is positive (usually that will be to the right or up,

but you are free to select positive as being any direction). The professor’s initial position is

and her final position is . Thus, her displacement is

In this coordinate system, motion to the right is positive, whereas motion to the left is negative.

Similarly, the airplane passenger’s initial position is and his final position is

so his displacement is

His displacement is negative because his motion is toward the rear of the plane, or in the

negative x direction in our coordinate system.

Distance

Although displacement is described in terms of direction, distance is not. Distance is defined

to be the magnitude or size of displacement between two positions. Note that the distance

between two positions is different from the distance traveled between them. Distance traveled

is the total length of the path traveled between two positions. Distance has no direction and,

thus, no sign. For example, the distance the professor walks is 2.0 m. The distance the airplane

passenger walks is 4.0 m.

Check Your Understanding: Displacement

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-117

VECTORS, SCALARS, AND COORDINATE SYSTEMS

What is the difference between distance and displacement? Whereas displacement is defined

by both direction and magnitude, distance is defined only by magnitude. Displacement is an

example of a vector quantity. Distance is an example of a scalar quantity. A vector is any

quantity with both magnitude and direction. Other examples of vectors include a velocity of 90

km/h east and a force of 500 newtons straight down.

The direction of a vector in one-dimensional motion is given simply by a plus (+) or minus (−)

sign. Vectors are represented graphically by arrows. An arrow used to represent a vector has
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a length proportional to the vector’s magnitude (e.g., the larger the magnitude, the longer the

length of the vector) and points in the same direction as the vector.

Some physical quantities, like distance, either have no direction or none is specified. A scalar

is any quantity that has a magnitude, but no direction. For example, a temperature, the

250 kilocalories (250 Calories) of energy in a candy bar, a 90 km/h speed limit, a person’s 1.8

m height, and a distance of 2.0 m are all scalars – quantities with no specified direction. Note,

however, that a scalar can be negative, such as temperature. In this case, the minus sign

indicates a point on a scale rather than a direction. Scalars are never represented by arrows.

Coordinate Systems for One-Dimensional Motion

To describe the direction of a vector quantity, you must designate a coordinate system within

the reference frame. For one-dimensional motion, this is a simple coordinate system consisting

of a one-dimensional coordinate line. In general, when describing horizontal motion, motion

to the right is usually considered positive, and motion to the left is considered negative. With

vertical motion, motion up is usually positive, and motion down is negative. In some cases,

however, as with the jet in Figure 3 below, it can be more convenient to switch the positive and

negative directions. For example, if you are analyzing the motion of falling objects, it can be

useful to define downwards as the positive direction. If people in a race are running to the left,

it is useful to define left as the positive direction. It does not matter as long as the system is clear

and consistent. Once you assign a positive direction and start solving a problem, you cannot

change it.

Figure 3: It is usually convenient to consider motion upward or to the right as positive (+) and motion
downward or to the left as negative (-)

Check Your Understanding: Vectors, Scalars, and Coordinate Systems
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-118

TIME, VELOCITY, SPEED, AND ACCELERATION

In this section, you will learn about time, velocity, speed and acceleration along with motion graphs

and motion diagrams by reading each description. Also, short problems to check your understanding

are included.

DESCRIBE THE MOTION OF AN OBJECT IN THE GRAPHIC FORM THROUGH THE

TIME-SPACE DIAGRAM

Time, Velocity, and Speed, Acceleration

In physics, the definition of time is simple — time is change, or the interval over which

change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI

unit for time is the second, abbreviated s. We might, for example, observe that a certain

pendulum makes one full swing every 0.75 s. We could then use the pendulum to measure

time by counting its swings or, of course, by connecting the pendulum to a clock

mechanism that registers time on a dial. This allows us to not only measure the amount

of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular

motion, such as how long it takes an airplane passenger to get from his seat to the back of

the plane. To find elapsed time, we note the time at the beginning and end of the motion

and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50

A.M., so that the elapsed time would be 50 min. Elapsed time ∆t is the difference between

the ending time and beginning time,

Where is the change in time or elapsed time, is the time at the end of the motion,

and is the time at the beginning of the motion. (As usual, the delta symbol, , means

the change in the quantity that follows it.)

Velocity:

Your notion of velocity is probably the same as its scientific definition. You know that if

you have a large displacement in a small amount of time you have a large velocity, and
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that velocity has units of distance divided by time, such as miles per hour or kilometers

per hour.

Average velocity is displacement (change in position divided by the time of travel,

Where is the average (indicated by the bar over the v) velocity, is the change in

position (or displacement), and and are the final and beginning positions at times

and , respectively. If the starting time is taken to be zero, the average velocity is

simply

Notice that this definition indicates that velocity is a vector because displacement is a

vector. It has both magnitude and direction. The SI unit for velocity is meters per second

or m/s, but many other units, such as km/h, mi/h (also written as mph), and cm/s, are in

common use. Suppose, for example, an airplane passenger took 5 seconds to move -4 m

(the minus sign indicates that displacement is toward the back of the plane). His average

velocity would be

The minus sign indicates the average velocity is also toward the rear of the plane.

The average velocity of an object does not tell us anything about what happens to it

between the starting point and ending point, however. For example, we cannot tell from

average velocity whether the airplane passenger stops momentarily or backs up before he

goes to the back of the plane. To get more details, we must consider smaller segments of

the trip over smaller time intervals.

Figure 4: A more detailed record of an airplane passenger heading toward the back of
the plane, showing smaller segments of his trip.

The smaller the time intervals considered in a motion, the more detailed the information.
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When we carry this process to its logical conclusion, we are left with an infinitesimally

small interval. Over such an interval, the average velocity becomes the instantaneous

velocity or the velocity at a specific instant. A car’s speedometer, for example, shows the

magnitude (but not the direction) of the instantaneous velocity of the car. (Police give

tickets based on instantaneous velocity, but when calculating how long it will take to get

from one place to another on a road trip, you need to use average velocity.) Instantaneous

velocity v is the average velocity at a specific instant in time (or over an infinitesimally

small-time interval).

Speed:

In everyday language, most people use the terms “speed” and “velocity” interchangeably.

In physics, however, they do not have the same meaning and they are distinct concepts.

One major difference is that speed has no direction. Thus, speed is a scalar. Just as we

need to distinguish between instantaneous velocity and average velocity, we also need to

distinguish between instantaneous speed and average speed.

Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the

airplane passenger at one instant had an instantaneous velocity of −3.0 m/s (the minus

meaning toward the rear of the plane). At that same time, his instantaneous speed was

3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity

is 40 km/h due north. Your instantaneous speed at that instant would be 40 km/h—the

same magnitude but without a direction. Average speed, however, is vastly different from

average velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average speed

can be greater than average velocity, which is displacement divided by time. For example,

if you drive to a store and return home in half an hour, and your car’s odometer shows

the total distance traveled was 6 km, then your average speed was 12 km/h. Your average

velocity, however, was zero, because your displacement for the round trip is zero.

(Displacement is change in position and, thus, is zero for a round trip.) Thus, average

speed is not simply the magnitude of average velocity.
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Figure 5: uring a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is
12 km/h. The displacement for the round trip is zero since there was no net change in position. Thus, the
average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or

of velocity as a function of time can be extremely useful. For example, for this trip to the

store, the position, velocity, and speed-vs.-time graphs are displayed in Figures 6-8. (Note

that these graphs depict a very simplified model of the trip. We are assuming that speed is

constant during the trip, which is unrealistic given that we will probably stop at the store.

But for simplicity’s sake, we will model it with no stops or changes in speed. We are also

assuming that the route between the store and the house is a perfectly straight line.)

Figure 6: Position vs. time on a trip. Note that the velocity for the
return trip is negative.
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Figure 7: Velocity vs. time on a trip. Note that the velocity for the
return trip is negative.

Figure 8: Speed vs. time on a trip. Note that the velocity for the
return trip is negative.

Acceleration:

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in

fact cause it to speed up. The greater the acceleration, the greater the change in velocity

over a given time. The formal definition of acceleration is consistent with these notions,

but more inclusive.

Average Acceleration is the rate at which velocity changes,

Where is average acceleration, v is velocity, and t is time.

Because acceleration is velocity in m/s divided by time in s, the SI units for acceleration

are meters per second squared or meters per second per second, which means by

how many meters per second the velocity changes every second.
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Recall that velocity is a vector—it has both magnitude and direction. This means that a

change in velocity can be a change in magnitude (or speed), but it can also be a change in

direction. For example, if a car turns a corner at constant speed, it is accelerating because

its direction is changing. The quicker you turn, the greater the acceleration. So, there is an

acceleration when velocity changes either in magnitude (an increase or decrease in speed)

or in direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it

is not always in the direction of motion. When an object’s acceleration is in the same

direction of its motion, the object will speed up. However, when an object’s acceleration

is opposite to the direction of its motion, the object will slow down. Speeding up and

slowing down should not be confused with a positive and negative acceleration.

Instantaneous Acceleration

Instantaneous acceleration a, or the acceleration at a specific instant in time, is obtained

by the same process as discussed for instantaneous velocity, that is by considering an

infinitesimally small interval of time. How do we find instantaneous acceleration using

only algebra? The answer is that we choose an average acceleration that is representative

of the motion. Figure 9 shows graphs of instantaneous acceleration versus time for

two quite different motions. In (a) the acceleration varies slightly and the average over

the entire interval is nearly the same as the instantaneous acceleration at any time. In

this case, we should treat this motion as if it had a constant acceleration equal to the

average (in this case about . In (b) the acceleration varies drastically over time.

In such situations it is best to consider smaller time intervals and choose an average

acceleration for each. For example, we could consider motion over the time intervals

from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of

, respectively.
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Figure 9: Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a)
Here acceleration varies only slightly and is always in the same direction since it is positive. The average
over the interval is nearly the same as the acceleration at any given time. (b) Here the acceleration varies,
perhaps representing a package on a post office conveyor belt that is accelerated forward and backward as
it bumps along. It is necessary to consider small time intervals (such as from 0 to 1.0 s) with constant or
nearly constant acceleration in such a situation.

Check Your Understanding: The Motion of an Object in the Graphic Form through the Time-
Space Diagram

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-119

Interpreting Motion Graphs

The Moving Man

Please complete the simulation here.

Check Your Understanding: Interpreting Motion Graphs
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-120

Motion Diagram

Comparing Motion Diagrams (Simulation)

Please complete the simulation at this link.

USE KINEMATIC EQUATIONS TO SOLVE FOR DISPLACEMENT, TIME, VELOCITY AND

ACCELERATION OF AN OBJECT

In this section, you will learn how to use kinematic equations to solve for displacement, time,

velocity and acceleration of an object by reading each description. Also, short problems to check your

understanding are included.

MOTION EQUATIONS FOR CONSTANT ACCELERATION IN ONE DIMENSION

We might know that the greater the acceleration of, say, a car moving away from a stop sign,

the greater the displacement in a given time. But we have not developed a specific equation that

relates acceleration and displacement. In this section, we develop some convenient equations

for kinematic relationships.

Notation: t, x, v, a

First, let us make some simplifications in notation. Taking the initial time to be zero, as

if time is measured with a stopwatch, is a great simplification. Since elapsed time is

the final time on the stopwatch. When

initial time is taken to be zero, we use the subscript 0 to denote initial values of position and

velocity. That is, is the initial position and , is the initial velocity. We put no subscripts on the

final values. The is, t is the final time, x is the final position, and v is final velocity. This gives a simpler

expression for elapsed time – now, . It also simplifies the expression for displacement,

which is now . Also, it simplifies the expression for change in velocity, which is

now . To summarize, using the simplified notation, with the initial time taken to

be zero,
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Where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in

whatever motion is under consideration.

We now make the important assumption that acceleration is constant. This assumption allows

us to avoid using calculus to find instantaneous acceleration. Since acceleration is constant, the

average and instantaneous accelerations are equal. That is,

So, we use the symbol a for acceleration at all times. Assuming acceleration to be constant

does not seriously limit the situations we can study nor degrade the accuracy of our treatment.

For one thing, acceleration is constant in a considerable number of situations. Furthermore, in

many other situations we can accurately describe motion by assuming a constant acceleration

equal to the average acceleration for that motion. Finally, in motions where acceleration

changes drastically, such as a car accelerating to top speed and then braking to a stop, the

motion can be considered in separate parts, each of which has its own constant acceleration.

Solving for Displacement ( ) and the Final Position (x) from Average Velocity when

Acceleration (a) is Constant.

To get our first two new equations, we start with the definition of average velocity:

Substituting the simplified notation for yields

Solving for x yields

Where the average velocity is, with constant a

The equation reflects the fact that, when acceleration is constant, v is just the simple

average of the initial and final velocities. For example, if you steadily increase your velocity

(that is, with constant acceleration) from 30 to 60 km/h, then your average velocity during

this steady increase is 45 km/h. Using the equation , we see that

.

The equation gives insight into the relationship between displacement, average

velocity, and time. It shows, for example, that displacement is a linear function of average

velocity. (By linear function, we mean that displacement depends on rather than on raised

to some other power, such as . When graphed, linear functions look like straight lines with a

constant slope.) On a car trip, for example, we will get twice as far in a given time if we average

90 km/h than if we average 45 km/h.
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Figure 10: There is a linear relationship between displacement and
average velocity. For a given time t, an object moving twice as fast as
another object will move twice as far as the other object.

Solving for Final Velocity:

We can derive another useful equation by manipulating the definition of acceleration.

Substituting the simplified notation for gives us (constant a)

Solving for v yields (constant a)

In addition to being useful in problem solving, the equation gives us insight into

the relationships among velocity, acceleration, and time. From it we can see, for example that

• Final velocity depends on how large the acceleration is and how long it lasts

• If the acceleration is zero, then the final velocity equals the initial velocity , as

expected (i.e., velocity is constant)

• If a is negative, then the final velocity is less than the initial velocity.
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Solving for Final Position when Velocity is Not Constant

We can combine the equations above to find a third equation that allows us to calculate the final

position of an object experiencing constant acceleration. We start with

Adding to each side of this equation and dividing by 2 gives

Since for constant acceleration, then

Now we substitute this expression for into the equation for displacement, ,

yielding (constant a)

What else can we learn by examining the equation ? We see that:

• Displacement depends on the square of the elapsed time when acceleration is not zero.

• If acceleration is zero, then the initial velocity equals average velocity

Solving for Final Velocity when Velocity is not Constant

A fourth useful equation can be obtained from another algebraic manipulation of previous

equations.

If we solve , we get

Substituting this and into , we get (constant a)

An examination of the equation can produce further insights into the

general relationships among physical quantities:
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• The final velocity depends on how large the acceleration is and the distance over which it acts

• For a fixed deceleration, a car that is going twice as fast does not simply stop in twice the

distance – it takes much further to stop. (This is why we have reduced speed zones near

schools).

Summary of Kinematic Equations (Constant a)

WHAT ARE THE KINEMATIC FORMULAS?

Please read this link on kinematic formulas.

CHOOSING KINEMATIC EQUATIONS

FREE-BODY DIAGRAMS

In this section, you will learn about free-body diagrams and how to make a free-body diagram by

reading each description. Also, short problems to check your understanding are included.

INTRODUCTION TO FORCES AND FREE-BODY DIAGRAMS

Key terms:

Term Meaning

Force A push or pull on an object, usually has symbol F. Has SI units of Newtons

Contact
force A force that requires contact between objects. Examples are tension, normal force, and friction.

Long range
force A force that does not need contact between objects to exist.

Free body
diagram

A diagram showing the forces acting on the object. The object is represented by a dot with forces drawn as arrows
pointing away from the dot. Sometimes called force diagrams.

Types of forces:
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Force (symbol) Force
type Description

Weight ( or

W)
Long
range

Force from gravity acting on an object with mass. Sometime called force of gravity. Pulls towards the
Earth (down) always.

Tension ( or
T)

Contact
Force of something pulling on an object. Can be caused by a string, rope, chain, cord, cable, or wire.
Pulls along the direction of the rope on the object.

Normal force (
or N) Contact Force between two objects when they touch. Pushes perpendicularly to the object’s surface.

Friction (

or f)
Contact Force resisting sliding between surfaces. Pushes parallel to the contact surface and in the opposite

direction of sliding.

How to make a free body diagram:

1. Start by identifying the contact forces. Let us look for what the object is touching by

outlining the object (see Figure 11). Draw a dot where something touches the outline;

where there is a dot, there must be at least one contact force. Draw the force vectors at

the contact points to represent how they push or pull on the object (including correct

direction).

Figure 11: Contact force identification for a block of cheese resting on a ramp.

2. After we have identified the contact forces, draw a dot to represent the object we are

interested in (see Figure 12 in example). We only want to find the forces acting on our

object and not forces the object exerts on other objects.

3. Draw a coordinate system and label the positive directions. If the object is on an

incline, then align the axes with the incline.

4. Draw the contact forces on the dot with an arrow pointing away from the dot. Make

sure the arrow lengths are relatively proportional to each other. Label all forces.

5. Draw and label our long-range forces. This will usually be weight unless there is

electric charge or magnetism involved.

6. Draw and label your acceleration vector off to the side of the dot – not touching the
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dot. If there is no acceleration, then write .

Here is an example of a free body diagram for a block of cheese resting on a table (See Figure

12). Gravity pulls down on the cheese’s mass with weight (W) and the table pushes up on the

cheese with a normal force (N). Since there are no ropes and the cheese is not trying to slide,

there is no tension or friction.

Figure 12: The free body diagram for a block of cheese resting on a table has normal force N up, weight W down,
and no acceleration.

Common mistakes and misconceptions

1. Sometimes people draw the forces of the object acting on other things. We only want to

draw the forces pushing or pulling on our object. Only focus on what is happening to

the object of interest.

2. Sometimes people forget the directions of the different types of forces. Weight is always

down, friction is always parallel to the contact surface, normal force is always

perpendicular to the contact surface, and tension only pulls.

Check Your Understanding: Forces and Free-body Diagrams
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-170

ESTIMATE THE FRICTION FORCE AND NORMAL REACTION ON A STATIC OBJECT

In this section, you will learn how estimate the friction force and normal reaction on a static object

and learn about kinetic and static friction forces by reading each description along with watching the

videos. Also, short problems to check your understanding are included.

NORMAL FORCE

If the force supporting a load is perpendicular to the surface of contact between the load and

its support, this force is defined to be a normal force and is given the symbol N (different from

newton). The word normal means perpendicular to a surface.

FRICTION

Friction is a force that opposes relative motion between systems in contact. One of the simpler

characteristics of friction is that it is parallel to the contact surface between systems and always

in a direction that opposes motion or attempted motion of the systems relative to each other. If

two systems are in contact and moving relative to one another, then the friction between them

is called kinetic friction. For example, friction slows a hockey puck sliding on ice. But when

objects are stationary, static friction can act between them; the static friction is usually greater

than the kinetic friction between the objects.

As seen in Table 1 below, the coefficients of kinetic friction are less than their static

counterparts. The equations explained below include the dependence of friction on materials

and the normal force.
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Table 1: Coefficients of Static and Kinetic Friction

System Static Function Kinetic Function

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.7 0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.04 0.02

Kinetic and Static Friction Forces

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-1

Static Friction Equation

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-2

Where there is no motion between the objects, the magnitude of static friction is

is the coefficient of static friction and N is the magnitude of the

normal force.

The symbol means less than or equal to, implying that static friction
can have a minimum and a maximum value of . Static friction is
a responsive force that increases to be equal and opposite to whatever
force is exerted, up to its maximum limit. Once the applied force
exceeds , the object will move. Thus .
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Kinetic Friction Equation

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-3

Once an object is moving, the magnitude of kinetic friction is given by

is the coefficient of kinetic friction.

Check Your Understanding: Friction

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-122

STATIC AND KINETIC FRICTION EXAMPLE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-4

Check Your Understanding: Static and Kinetic Friction

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-123
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FORCES AND NEWTON’S LAWS

In this section, you will learn about Newton’s three laws of motion along with laws of gravitation

by reading each description along with watching the videos. Also, short problems to check your

understanding are included.

NEWTON’S 3 LAWS OF MOTION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-5

Newton’s First Law of Motion

There exists an inertial frame of reference such that a body at rest remains at rest, or, if in

motion, remains in motion at a constant velocity unless acted on by a net external force.

The first law of motion postulates the existence of at least one frame of reference which

we call an inertial reference frame, relative to which the motion of an object not subject

to forces is a straight line at a constant speed. An inertial reference frame is any reference

frame that is not itself accelerating. A car traveling at constant velocity is an inertial

reference frame. A car slowing down for a stoplight, or speeding up after the light turns

green, will be accelerating and is not an inertial reference frame. Finally, when the car

goes around a turn, which is due to an acceleration changing the direction of the velocity

vector, it is not an inertial reference frame. Note that Newton’s laws of motion are only

valid for inertial reference frames.

Rather than contradicting our experience, Newton’s first law of motion states that there

must be a cause (which is a net external force) for there to be any change in velocity (either

a change in magnitude or direction) in an inertial reference frame. An object sliding

across a table or floor slows down due to the net force of friction acting on the object.

The idea of cause and effect is crucial in accurately describing what happens in various

situations. For example, consider what happens to an object sliding along a rough

horizontal surface. The object quickly grinds to a halt. If we spray the surface with talcum

powder to make the surface smoother, the object slides farther. If we make the surface

even smoother by rubbing lubricating oil on it, the object slides farther yet. Extrapolating

to a frictionless surface, we can imagine the object sliding in a straight line indefinitely.

Friction is thus the cause of the slowing (consistent with Newton’s first law). The object

would not slow down at all if friction were completely eliminated. Consider an air hockey

table. When the air is turned off, the puck slides only a short distance before friction

slows it to a stop. However, when the air is turned on, it creates a nearly frictionless

surface, and the puck glides long distances without slowing down. Additionally, if we
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know enough about the friction, we can accurately predict how quickly the object will

slow down. Friction is an external force.

Mass: The property of a body to remain at rest or to remain in motion with constant

velocity is called inertia. Newton’s first law is often called the law of inertia. As we know

from experience, some objects have more inertia than others. It is obviously more difficult

to change the motion of a large boulder than that of a basketball, for example. The inertia

of an object is measured by its mass.

An object with a small mass will exhibit less inertia and be more affected by other objects.

An object with a large mass will exhibit greater inertia and be less affected by other

objects. This inertial mass of an object is a measure of how difficult it is to alter the

uniform motion of the object by an external force.

Roughly speaking, mass is a measure of the amount of “stuff” (or matter) in something.

The quantity or amount of matter in an object is determined by the numbers of atoms and

molecules of several types it contains. Unlike weight, mass does not vary with location.

The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. In

practice, it is exceedingly difficult to count and identify all of the atoms and molecules in

an object, so masses are not often determined in this manner. Operationally, the masses

of objects are determined by comparison with the standard kilogram.

Check Your Understanding: Newton’s First Law of Motion

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-124

Newton’s Second Law of Motion

Newton’s second law of motion is closely related to Newton’s first law of motion. It

mathematically states the cause-and-effect relationship between force and changes in

motion. Newton’s second law of motion is more quantitative and is used extensively

to calculate what happens in situations involving a force. Before we can write down

Newton’s second law as a simple equation giving the exact relationship of force, mass, and

acceleration, we need to sharpen some ideas that have already been mentioned.

First, what do we mean by a change in motion? The answer is that a change in motion is

equivalent to a change in velocity. A change in velocity means, by definition, that there

is an acceleration. Newton’s first law says that a net external force causes a change in

motion; thus, we see that a net external force causes acceleration.
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Another question immediately arises. What do we mean by an external force? An intuitive

notion of external is correct—an external force acts from outside the system of interest.

An internal force acts between elements of the system. Only external forces affect the

motion of a system, according to Newton’s first law.

To obtain an equation for Newton’s Second Law, we first write the relationship of

acceleration and net external force as the proportionality

Where the symbol means “proportional to,” and is the net external force. This

proportionality states acceleration is directly proportional to the net external force. Now,

it also seems reasonable that acceleration should be inversely proportional to the mass of

the system. In other words, the larger the mass (the inertia), the smaller the acceleration

produced by a given force. This proportionality is written as , where m is the mass

of the system. Combining the two proportionalities just given yield’s Newton’s Second

Law of Motion.

Newton’s Second Law of Motion: The acceleration of a system is directly proportional

to and in the same direction as the net external force acting on the system, and inversely

proportional to its mass. In equation form, Newton’s Second Law of Motion is:

Often written as:

Units of Force: is used to define the units of force in terms of the three basic

units for mass, length, and time. The SI unit of force is called the newton (abbreviated N)

and is the force needed to accelerate a 1-kg system at the rate of . That is, since

.

Weight and the Gravitational Force: When an object is dropped, it accelerates toward

the center of Earth. Newton’s second law states that a net force on an object is responsible

for its acceleration. If air resistance is negligible, the net force on a falling object is the

gravitational force, commonly called its weight w.

Since the object experiences only the downward force of gravity, . We know

that the acceleration of an object due to gravity is . Substituting these into

Newton’s Second Law gives . Since on Earth, the weight of a

1.0 kg object on Earth is 9.8N, as we see: .

When the net external force on an object is its weight, we say that it is in free-fall. That is,

the only force acting on the object is the force of gravity. In the real world, when objects

fall downward toward Earth, they are never truly in free-fall because there is always some

upward force from the air acting on the object.
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Common misconceptions: Mass vs. Weight: It is important to be aware that weight and

mass are very different physical quantities, although they are closely related. Mass is the

quantity of matter (how much “stuff”) and does not vary in classical physics, whereas

weight is the gravitational force and does vary depending on gravity. It is tempting to

equate the two, since most of our examples take place on Earth, where the weight of an

object only varies a little with the location of the object.

Check Your Understanding: Newton’s Second Law of Motion

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-125

Newton’s Third Law of Motion

Whenever one body exerts a force on a second body, the first body experiences a force

that is equal in magnitude and opposite in direction to the force that it exerts.

This law represents a certain symmetry in nature: Forces always occur in pairs, and one

body cannot exert a force on another without experiencing a force itself. We sometimes

refer to this law loosely as “action-reaction,” where the force exerted is the action and the

force experienced as a consequence is the reaction. Newton’s third law has practical uses

in analyzing the origin of forces and understanding which forces are external to a system.

You might think that two equal and opposite forces would cancel, but they do not because

they act on different systems.

Other examples of Newton’s third law are easy to find. As a professor paces in front of

a whiteboard, she exerts a force backward on the floor. The floor exerts a reaction force

forward on the professor that causes her to accelerate forward. Similarly, a car accelerates

because the ground pushes forward on the drive wheels in reaction to the drive wheels

pushing backward on the ground. You can see evidence of the wheels pushing backward

when tires spin on a gravel road and throw rocks backward.

In another example, rockets move forward by expelling gas backward at high velocity.

This means the rocket exerts a large backward force on the gas in the rocket combustion

chamber, and the gas therefore exerts a large reaction force forward on the rocket.

This reaction force is called thrust. It is a common misconception that rockets propel

themselves by pushing on the ground or on the air behind them. They actually work

better in a vacuum, where they can more readily expel the exhaust gases. Helicopters

similarly create lift by pushing air down, thereby experiencing an upward reaction force.
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Birds and airplanes also fly by exerting force on air in a direction opposite to that of

whatever force they need.

Check Your Understanding: Newton’s Third Law of Motion

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-126

GRAVITY FORCE LAB

One or more interactive elements has been excluded from this version of the text. You can view them

online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#iframe-phet-1

LAWS OF GRAVITATION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-6

Newton’s Universal Law of Gravitation

The gravitational force is relatively simple. It is always attractive, and it depends only

on the masses involved and the distance between them. Stated in modern language,

Newton’s universal law of gravitation states that every particle in the universe attracts

every other particle with a force along a line joining them. The force is directly

proportional to the product of their masses and inversely proportional to the square of

the distance between them.

Misconception alert: The magnitude of the force on each object (one has larger mass

than the other) is the same, consistent with Newton’s Third Law.
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For two bodies having masses m and M with a distance r between their centers of mass,

the equation for Newton’s Universal Law of Gravitation is

Where F is the magnitude of the gravitation force and G is a proportionality factor called

the gravitational constant. G is a universal gravitational constant—that is, it is thought to

be the same everywhere in the universe. It has been measured experimentally to be in SI

units,

INTRODUCTION TO SPATIAL INTERACTION MODELLING

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-7

Check Your Understanding: Spatial Interaction Modelling

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-127

DESCRIBE THE MOTION OF AN OBJECT ALONG A CIRCULAR PATH

In this section, you will learn about the motion of an object along a circular path by reading each

description along with watching the videos. Also, short problems to check your understanding are

included.

ANGULAR ROTATION

Angle Units
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One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-8

Angular Position and Displacement

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-9

Angular Velocity and Acceleration

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-10

Uniform Circular Motion

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-11

Rotation Angle and Angular Velocity

We begin the study of uniform circular motion by defining two angular quantities needed

to describe rotational motion.

Rotation Angle

When objects rotate about some axis – for example, when the CD in Figure 13 below

rotates about its center – each point in the object follows a circular arc. Consider a line

from the center of the CD to its edge. Each pit used to record sound along this line moves

through the same angle in the same amount of time. The rotation angle is the amount of

rotation and is analogous to linear distance. We define the rotation angle to be the

ratio of the arc length to the radius of curvature:
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Figure 13: All points on a CD travel in circular arcs. The pits along a line from the center to the edge all move
through the same angle

The arc length is the distance traveled along a circular path as shown in Figure 14

below. Note that r is the radius of curvature of the circular path.
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Figure 14: The radius of a circle is rotated through an angle . The arc length
is described on the circumference.

We know that for one complete revolution, the arc length is the circumference of a circle

of radius r. The circumference of a circle is . Thus, for one complete revolution the

rotation angle is

This result is the basis for defining the units used to measure rotation angles, to be

radians (rad), defined so that

A comparison of some useful angles expressed in both degrees and radians is shown in

Table 2 below.

Table 2: Comparison of Angular Units

Degree Measures Radian Measure

30°

60°

90°

120°

135°

180°

Angular Velocity
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How fast is an object rotating? We define angular velocity as the rate of change of an

angle. In symbols, this is

Where an angular rotation takes place in a time . The greater the rotation angle in

a given amount of time, the greater the angular velocity. The units for angular velocity are

radians per second (rad/s).

Angular velocity is analogous to linear velocity v. To get the precise relationship

between angular and linear velocity, we again consider a pit on the rotating CD. This pit

moves an arc length in a time , and so it has a linear velocity

From we see that . Substituting this into the expression for v gives

We write this relationship in two different ways and gain two different insights:

The first relationship in states that the linear velocity v is

proportional to the distance from the center of rotation, thus, it is the largest for a point

on the rim (larges r), as you might expect. We can also call this linear speed v of a point

on the rim the tangential speed. The second relationship in can be

illustrated by considering the tire of a moving car. Note that the speed of a point on the

rim of the tire is the same as the speed v of the car. See Figure 15 below. So, the faster the

car moves, the faster the tire spins – large v means a large , because . Similarly,

a larger-radius tire rotating at the same angular velocity ( ) will produce a greater linear

speed (v) for the car.
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Figure 15: A car moving at a velocity v to the right has a tire rotating with an angular velocity . The speed of the tread
of the tire relative to the axle is v, the same as if the car were jacked up. Thus, the car moves forward at linear velocity

, where r is the tire radius. A larger angular velocity for the tire means a greater velocity for the car.

Check Your Understanding: Angular Rotation

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-128
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CIRCULAR MOTION AND CENTRIPETAL ACCELERATION

Centripetal Force and Acceleration Intuition

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-12

Visual Understanding of Centripetal Acceleration Formula

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-13

Centripetal Acceleration

We know from kinematics that acceleration is a change in velocity, either in its magnitude

or in its direction, or both. In uniform circular motion, the direction of the velocity

changes constantly, so there is always an associated acceleration, even though the

magnitude of the velocity might be constant. You experience this acceleration yourself

when you turn a corner in your car. (If you hold the wheel steady during a turn and move

at constant speed, you are in uniform circular motion.) What you notice is a sideways

acceleration because you and the car are changing direction. The sharper the curve and

the greater your speed, the more noticeable this acceleration will become. In this section

we examine the direction and magnitude of that acceleration.

Figure 16 below shows an object moving in a circular path at constant speed. The

direction of the instantaneous velocity is shown at two points along the path.

Acceleration is in the direction of the change in velocity, which points directly toward the

center of rotation (the center of the circular path). This pointing is shown with the vector

diagram in the figure. We call the acceleration of an object moving in uniform circular

motion (resulting from a net external force) the centripetal acceleration ( ); centripetal

means “toward the center” or “center seeking.”
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Figure 16: The directions of the velocity of an object at two different points are shown, and the change in velocity

is seen to point directly toward the center of curvature. (See small inset). Because , the

acceleration is also toward the center; is called centripetal acceleration. (Because is exceedingly small, the
arc length is equal to the chord length for small time differences).

The direction of centripetal acceleration is toward the center of curvature, but what is

its magnitude? Note that the triangle formed by the velocity vectors and the one formed

by the radii r and are similar. Both the triangles ABC and PQR are isosceles triangles

(two equal sides). The two equal sides of the velocity vector triangle are the speeds

. Using the properties of two similar triangles, we obtain

Acceleration is , and so we first solve this expression for :

Then we divide this by , yielding
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Finally, noting that , and that , the linear or tangential speed, we see that

the magnitude of the centripetal acceleration is

Which is the acceleration of an object in a circle of radius r at a speed v. So, centripetal

acceleration is greater at high speeds and in sharp curves (smaller radius), as you have

noticed when driving a car. But it is a bit surprising that is proportional to speed

squared, implying, for example, that it is four times as hard to take a curve at 100 km/h

than at 50 km/h. A sharp corner has a small radius, so that is greater for tighter turns,

as you have probably noticed.

It is also useful to express in terms of angular velocity. Substituting into

the above expression, we find . We can express the magnitude of

centripetal acceleration using either of the two equations:

Recall that the direction of is toward the center. You may use whichever expression is

more convenient.

Check Your Understanding: Circular Motion and Centripetal Acceleration

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#h5p-129

CENTRIPETAL FORCES

Centripetal Force Problem Solving

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-14

Centripetal Force

Any force or combination of forces can cause a centripetal or radial acceleration. Just a
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few examples are the tension in the rope on a tether ball, the force of Earth’s gravity on

the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a

car, and forces on the tube of a spinning centrifuge.

Any net force causing circular motion is called a centripetal force. The direction of a

centripetal force is toward the center of curvature, the same as the direction of centripetal

acceleration. According to Newton’s Second Law of Motion, the net force is mass times

acceleration: . For uniform circular motion, the acceleration is the

centripetal acceleration – . Thus, the magnitude of centripetal force is

By using the expressions for centripetal acceleration ; , we

get two expressions for the centripetal force in terms of mass, velocity, angular

velocity, and radius of curvature:

You may use whichever expression for centripetal force is more convenient. Centripetal

force is always perpendicular to the path and pointing to the center of curvature,

because is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for r, you get

This implies that for a given mass and velocity, a large centripetal force causes a small

radius of curvature – that is, a tight curve.
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Figure 17: The frictional force supplies the centripetal force and is numerically equal to it. Centripetal
force is perpendicular to velocity and causes uniform circular motion. The larger the , the smaller the
radius of curvature r and the sharper the curve.
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Figure 18: The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force
is perpendicular to velocity and causes uniform circular motion. The larger the , the smaller the radius
of curvature r and the sharper the curve. This curve has the same v, but a larger produces a smaller r’.

Example 1

1. What coefficient of friction do car tires need on a flat curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve as

.

(b) Assuming an unbanked curve, find the minimum statis coefficient of friction, between the tires

and the road, static friction being the reason that keeps the car from slipping (See Figure 19 below).
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Figure 19

Answer: (a)

(b) Figure 19 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the
car from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this
case. We know that the maximum static friction (at which the tires roll but do not slip) is is the
static coefficient of friction and N is the normal force. The normal force equals the car’s weight on level ground, so that

. Thus the centripetal force in this situation is

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for
from the equation

We solve this for , noting that mass cancels, and obtain

Substituting the knowns,
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Let us now consider banked curves, where the slope of the road helps you negotiate the curve. See Figure 20

below. The greater the angle , the faster you can take the curve. Racetracks for bikes as well as cars, for

example, often have steeply banked curves. In an “ideally banked curve,” the angle is such that you can

negotiate the curve at a certain speed without the aid of friction between the tires and the road. We will derive

an expression for for an ideally banked curve and consider an example related to it.

Figure 20: The car on this banked curve is moving away and turning to the left.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The

components of the normal force N in the horizontal and vertical directions must equal the centripetal force and

the weight of the car, respectively. In cases in which forces are not parallel, it is most convenient to consider

components along perpendicular axes – in this case, the vertical and horizontal directions.

Figure 20 above shows a free body diagram for a car on a frictionless banked curve. If the angle is ideal for the

speed and radius, then the net external force will equal the necessary centripetal force. The only two external

forces acting on the car are its weight w and the normal force of the road N. (A frictionless surface can only

exert a force perpendicular to the surface – that is, a normal force). These two forces must add to give a net

external force that is horizontal toward the center of curvature and has magnitude . Because this is the

crucial force and it is horizontal, we use a coordinate system with vertical and horizontal axes. Only the normal

force has a horizontal component, and so this must equal the centripetal force – that is,

OERTRANSPORT: FUNDAMENTALS OF MATH, PHYSICS, AND STATISTICS FOR FUTURE TRANSPORTATION PROFESSIONALS 103



Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the

vertical components of the two external forces must be equal in magnitude and opposite in direction. From the

figure, we see that the vertical component of the normal force is N cos , and the only other vertical force is the

car’s weight. These must be equal in magnitude; thus,

Now we can combine the last two equations to eliminate N and get an expression for , as desired. Solving the

second equation for , and substituting this into the first yields

m g \tan (\theta)=\frac{m v^2}{r}

Taking the inverse tangent gives

This expression can be understood by considering how depends on v and r. A large will be obtained for a

large v and a small r. That is, roads must be steeps banked for high speeds and sharp curves. Friction helps,

because it allows you to take the curve at greater or lower speed than if the curve is frictionless. Note that

does not depend on the mass of the vehicle

Example 2

1. What is the ideal speed to take a steeply banked tight curve? Curves on some test tracks and

racecourses, such as the Daytona International Speedway in Florida, are very steeply banked. This

banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken

at very high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at

should be driven if the road is frictionless.

Answer:

Noting that , we obtain
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FRAMES OF REFERENCE

Fictitious Forces

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=544#oembed-15

Fictitious Forces and Non-Inertial Frames: The Coriolis Force

What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round,

and the circular motion of a tropical cyclone have in common? Each exhibits fictitious

forces—unreal forces that arise from motion and may seem real, because the observer’s

frame of reference is accelerating or rotating.

When taking off in a jet, most people would agree it feels as if you are being pushed back into

the seat as the airplane accelerates down the runway. Yet a physicist would say that you tend to

remain stationary while the seat pushes forward on you, and there is no real force backward on

you. An even more common experience occurs when you make a tight curve in your car—say, to

the right. You feel as if you are thrown (that is, forced) toward the left relative to the car. Again,

a physicist would say that you are going in a straight line, but the car moves to the right, and

there is no real force on you to the left. Recall Newton’s first law.
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Figure 21: (a) The car driver feels herself forced to the left relative to the car when she
makes a right turn. This is a fictitious force arising from the use of the car as a frame of
reference. (b) In the Earth’s frame of reference, the driver moves in a straight line,
obeying Newton’s first law, and the car moves to the right. There is no real force to the
left on the driver relative to Earth. There is a real force to the right on the car to make it
turn.

We can reconcile these points of view by examining the frames of reference used. Let

us concentrate on people in a car. Passengers instinctively use the car as a frame of

reference, while a physicist uses Earth. The physicist chooses Earth because it is very

nearly an inertial frame of reference—one in which all forces are real (that is, in which all

forces have an identifiable physical origin). The car is a non-inertial frame of reference

because it is accelerated to the side. The force to the left sensed by car passengers is a

fictitious force having no physical origin. There is nothing real pushing them left—the

car, as well as the driver, is actually accelerating to the right.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating

playground merry-go-round. You take the merry-go-round to be your frame of reference

because you rotate together. In that non-inertial frame, you feel a fictitious force, named

centrifugal force (not to be confused with centripetal force), trying to throw you off. You

must hang on tightly to counteract the centrifugal force. In Earth’s frame of reference,

there is no force trying to throw you off. Rather you must hang on to make yourself go in

a circle because otherwise you would go in a straight line, right off the merry-go-round.
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Figure 22: (a) A rider on a merry-go-round feels as if he is being thrown off. This fictitious force is called the
centrifugal force—it explains the rider’s motion in the rotating frame of reference. (b) In an inertial frame of
reference and according to Newton’s laws, it is his inertia that carries him off and not a real force (the unshaded
rider has and heads in a straight line). A real force, , is needed to cause a circular

path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal

force to cause circular motion, is put to good use in centrifuges (See Figure 23). A

centrifuge spins a sample very rapidly. Viewed from the rotating frame of reference, the

fictitious centrifugal force throws particles outward, hastening their sedimentation. The

greater the angular velocity, the greater the centrifugal force. But what really happens is

that the inertia of the particles carries them along a line tangent to the circle while the test

tube is forced in a circular path by a centripetal force.
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Figure 23: Centrifuges use inertia to perform their task. Particles in the fluid sediment come out because
their inertia carries them away from the center of rotation. The large angular velocity of the centrifuge
quickens the sedimentation. Ultimately, the particles will come into contact with the test tube walls,
which will then supply the centripetal force needed to make them move in a circle of constant radius.

Let us now consider what happens if something moves in a frame of reference that

rotates. For example, what if you slide a ball directly away from the center of the merry-

go-round, as shown in Figure 24 below? The ball follows a straight path relative to Earth

(assuming negligible friction) and a path curved to the right on the merry-go-round’s

surface. A person standing next to the merry-go-round sees the ball moving straight and

the merry-go-round rotating underneath it. In the merry-go-round’s frame of reference,

we explain the apparent curve to the right by using a fictitious force, called the Coriolis

force, which causes the ball to curve to the right. The fictitious Coriolis force can be

used by anyone in that frame of reference to explain why objects follow curved paths and

allows us to apply Newton’s Laws in non-inertial frames of reference.
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Figure 24: Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight
toward the edge follows a path curved to the right. The person slides the ball toward point B, starting at point A.
Both points rotate to the shaded positions (A’ and B’) shown in the time that the ball follows the curved path in the
rotating frame and a straight path in Earth’s frame.
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RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section explains the relevance of trip distribution, superelevation, stopping sight distance, time

and space headways to transportation engineering coursework.

TRIP DISTRIBUTION

In travel demand modeling, one of the major steps (typically Step 2 of the 4-step process)

involves estimating the number of trips made from one designated traffic analysis zone (TAZ)

to another. This step is termed the trip distribution step. There are multiple trip distribution

computational techniques, or “models,” and the gravity model, derived from the physics gravity

model (see the above section titled “Laws of Gravitation”), is one of the most useful models. In

the physics gravity model, the greater the masses of two objects and the shorter the distance

between them, the greater the gravitational pull. In the trip distribution step, the total number

of trips produced at the origin zone and attracted at the destination zone are analogous to the

object masses. Furthermore, just like the gravity model from Physics, the number of trips is also

inversely proportional to an exponent of the distance between zones.

SUPERELEVATION

The above section titled “Circular Motion and Centripetal Acceleration” describes the basics of

circular motion. This understanding and the discussion on the balancing of forces in Chapter 6

are critical to the cross-section design of the road segments with horizontal curves.

STOPPING SIGHT DISTANCE

The stopping sight distance, SSD, is the distance needed for a driver to perceive an unusual

situation and stop to avoid crashing into an object or another road user. The SSD is estimated

based on the time needed for the driver to detect and recognize the situation, also known

as perception-reaction time (PRT), and the distance needed to brake to a complete stop, also

known as the braking distance. These distances are estimated using the principles of kinematics

for motion at constant speeds (see the above section titled ” 1.1 Describe the Motion of an

Object in the Graphic Form through the Time-Space Diagram”), with accelerated motion (see

sections “Motion Equations for Constant Acceleration in One Dimension” and “What are the

Kinematic Formulas?”), and traveling along a grade (see the section titled “Forces and Newton’s

Laws”).

TIME AND SPACE HEADWAYS

The time headway is the time difference between the front bumper of one vehicle and that of

another traveling behind it, passing the same point on a roadway segment. Space headway is

the physical distance between the front bumper of a vehicle and that of another behind it. The

relationship between time and space headways is based on kinematic relationships discussed

in the sections titled “Time, Velocity, Speed, and Acceleration” and ” Use Kinematic Equations

to Solve for Displacement, Time, Velocity and Acceleration of an Object”. The time headway

may be used to estimate the traffic flow rate at points of the roadway segments. It is defined as

the number of vehicles passing a point on the road per unit of time (in the units of vehicles/
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hour). The space headway may be used to estimate the density of the traffic stream on a roadway

segment. It is the number of vehicles observed per unit distance on a roadway stretch (vehicles/

mile).

Key Takeaways

• The gravity model from physics described in the chapter provides the foundational understanding of

the trip distribution modeling between traffic analysis zones (TAZs). The gravity model is based on the

idea that the number of trips between two zones is related to the size of the zones (i.e., total trips

produced/attracted at a zone based on characteristics such as population or employment) and the

distance between them.

• To ensure safe travel, the SSD (Stopping Sight Distance) is estimated based on the design speed

appropriate for the roadway segments. Principles of kinematics for motion discussed in this chapter

are used to derive formulas for estimating SSD appropriate for the context.

• The idea of motion at constant speed also relates to the time and space headways between vehicles

and is useful for estimating flow rate past a point and density on roadway segments.
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CHAPTER 6: BASIC DYNAMICS AND STATIC EQUILIBRIUM

Momentum and collision concepts support an understanding of how speed plays a critical role in

the safety of road users, particularly Vulnerable Road Users (VRUs), i.e., pedestrians and bicyclists.

Balancing forces on stationary objects is crucial for designing banking or superelevation (slope along

the cross-section of the road) of road segments with horizontal curvature.

Learning Objectives

• Balance forces on a stationary object in equilibrium

• Use of momentum preservation to describe the post-collision movement of objects

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

USE OF MOMENTUM PRESERVATION TO DESCRIBE THE POST-COLLISION

MOVEMENT OF OBJECTS

In this section, you will learn about the use off momentum preservation to describe the post-collision

movement of objects by watching the videos. Also, examples are for your understanding are included.

INTRODUCTION TO MOMENTUM

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-1

Impulse and Momentum Dodgeball Example
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One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-2

Bouncing Fruit Collision Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-3

Momentum: Ice Skater Throws a Ball

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-4

2-Dimensional Momentum Problem (Trig Review!)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-5

Part 2

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-6
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Force vs. Time Graphs

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-7

Check Your Understanding: Introduction to Momentum

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#h5p-150

MOMENTUM NOTES – OVERVIEW

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-8

LINEAR MOMENTUM

The scientific definition of linear momentum is consistent with most people’s intuitive

understanding of momentum: a large, fast-moving object has greater momentum than a

smaller, slower object. Linear momentum is defined as the product of a system’s mass

multiplied by its velocity. In symbols, linear momentum is expressed as

Momentum is directly proportional to the object’s mass and also its velocity. Thus, the

greater an object’s mass or the greater its velocity, the greater its momentum. Momentum

p is a vector having the same direction as the velocity v. The SI unit for momentum is

Example 1
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Calculating Momentum: A Football Player and a Football

(a) Calculate the momentum of a 110-kg football player running at 8.00 m/s.

(b) Compare the player’s momentum with the momentum of a hard-thrown 0.410-kg football that has a speed

of 25.0 m/s.

Answers:

(a)

(b)

The ratio of the player’s momentum to that of the ball is

Momentum and Newton’s Second Law

The importance of momentum, unlike the importance of energy, was recognized early

in the development of classical physics. Momentum was deemed so important that it

was called the “quantity of motion.” Newton actually stated his second law of motion in

terms of momentum: The net external force equals the change in momentum of a system

divided by the time over which it changes. Using symbols, this law is

Where is the net external force, is the change in momentum, and is the

change in time.

This statement of Newton’s Second Law of Motion includes the more familiar

as a special case. We can derive this form as follows. First, note that the

change in momentum is given by

If the mass of the system is constant, then

So that for constant mass, Newton’s Second Law of Motion becomes

Because , we get the familiar equation when the mass of the system

is constant.
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Example 2

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match,

reaching a speed of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus

Williams’ racquet, assuming that the ball’s speed just after impact is 58 m/s, that the initial horizontal

component of the velocity before impact is negligible, and that the ball remained in contact with the racquet for

5.0 ms (milliseconds)?

Answer:

Now the magnitude of the net external force can be determined by using

Impulse

The effect of a force on an object depends on how long it acts, as well as how great the

force is. In the Example 2 above, a large force acting for a brief time had a significant

effect on the momentum of the tennis ball. A small force could cause the same change in

momentum, but it would have to act for a much longer time. For example, if the ball were

thrown upward, the gravitational force (which is much smaller than the tennis racquet’s

force) would eventually reverse the momentum of the ball. Quantitatively, the effect we

are talking about is the change in momentum .

By rearranging the equation to be

We can see how the change in momentum equals the average net external force multiplied

by the time this force acts. The quantity is given the name impulse. Impulse if

the same as the change in momentum.

Example 3

1. Making connections – illustrations of force exerted:

A 1.2-kg block slides across a horizontal, frictionless surface with a constant speed of 3.0 m/s before striking a
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fixed barrier and coming to a stop. In Figure 1, the force exerted by the barrier is assumed to be a constant 15 N

during the 0.24-s collision. The impulse can be calculated using the area under the curve.

Figure 1: This is a graph showing the force exerted by a fixed barrier on a block versus time.

Note that the initial momentum of the block is

We are assuming that the initial velocity is −3.0 m/s. We have established that the force exerted by the barrier is in the

positive direction, so the initial velocity of the block must be in the negative direction. Since the final momentum of the block

is zero, the impulse is equal to the change in momentum of the block.

Suppose that, instead of striking a fixed barrier, the block is instead stopped by a spring. Consider the force exerted by the

spring over the time interval from the beginning of the collision until the block comes to rest.

In this case, the impulse can be calculated again using the area under the curve (the area of a triangle):

Again, this is equal to the difference between the initial and final momentum of the block, so the impulse is equal to the

change in momentum.

2. Calculating Magnitudes of Impulses – Two Billiard Balls Striking a Rigid Wall:

Two identical billiard balls strike a rigid wall with the same speed and are reflected without any change of speed. The first

strikes perpendicular to the wall. The second ball strikes the wall at an angle of 30°">30° from the perpendicular and

bounces off at an angle of 30°">30° from perpendicular to the wall.

(a) Determine the direction of force on the wall due to each ball.

(b) Calculate the ratio of the magnitudes of impulses on the two balls by the wall.

Answer:
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Strategy for A: In order to determine the force on the wall, consider the force on the ball due to the wall using Newton’s

second law and then apply Newton’s third law to determine the direction. Assume the x-axis to be normal to the wall and to

be positive in the initial direction of motion. Choose the y-axis to be along the wall in the plane of the second ball’s motion.

The momentum direction and the velocity direction are the same.

Solution for A: The first ball bounces directly into the wall and exerts a force on it in the +x direction. Therefore, the wall

exerts a force on the ball in the −x direction. The second ball continues with the same momentum component in the y

direction, but reverses its x-component of momentum, as seen by sketching a diagram of the angles involved and keeping in

mind the proportionality between velocity and momentum.

These changes mean the change in momentum for both balls are in the −x direction, so the force of the wall on each ball is

along the −x direction.

Strategy for B: Calculate the change in momentum for each ball, which is equal to the impulse imparted to the ball.

Solution for B: Let⯑ be the speed of each ball before and after collision with the wall, and⯑ the mass of each ball. Choose

the x-axis and y-axis as previously described and consider the change in momentum of the first ball which strikes

perpendicular to the wall.

Impulse is the change in momentum vector. Therefore, the x-component of impulse is equal to −2⯑⯑ and the y-component

of impulse is equal to zero.

Now consider the change in momentum of the second ball.

It should be noted here that while changes sign after the collision, does not. Therefore, the x-component of

impulse is equal to −2mucos 30°">−2⯑⯑cos30° and the y-component of impulse is equal to zero. The ratio of the

magnitudes of the impulse imparted to the balls is

3. Making connections – baseball:

In most real-life collisions, the forces acting on an object are not constant. For example, when a bat strikes a baseball, the

force is small at the beginning of the collision since only a small portion of the ball is initially in contact with the bat. As the

collision continues, the ball deforms so that a greater fraction of the ball is in contact with the bat, resulting in a greater

force. As the ball begins to leave the bat, the force drops to zero. Although the changing force is difficult to precisely

calculate at each instant, the average force can be estimated very well in most cases.

Suppose that a 150-g baseball experiences an average force of 480 N in a direction opposite the initial 32 m/s speed of the

baseball over a time interval of 0.017 s. What is the final velocity of the baseball after the collision?
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Conservation of Momentum

Momentum is an important quantity because it is conserved. Yet it was not conserved

in the examples in Impulse and Linear Momentum and Force, where large changes

in momentum were produced by forces acting on the system of interest. Under what

circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always

possible to find a larger system in which total momentum is constant, even if momentum

changes for components of the system. If a football player runs into the goalpost in the

end zone, there will be a force on him that causes him to bounce backward. However, the

Earth also recoils —conserving momentum—because of the force applied to it through

the goalpost. Because Earth is many orders of magnitude more massive than the player,

its recoil is immeasurably small and can be neglected in any practical sense, but it is real,

nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the

masses of a football player and Earth – for example, one car bumping into another, as

shown in Figure 2. Both cars are coating in the same direction when the lead car (labeled

) is bumped by the trailing car (labeled ). The only unbalanced force on each car

is the force of the collision. (Assume that the effects due to friction are negligible). Car

1 slows down as a result of the collision, losing some momentum, while car 2 speeds up

and gains some momentum. We shall now show that the total momentum of the two-car

system remains constant.
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Figure 2: A car of mass moving with a velocity of bumps into another car of mass and velocity that it is

following. As a result, the first car slows down to a velocity of and the second speeds up to a velocity of . The

momentum of each car is changed, but the total momentum of the two cars is the same before and after the
collision (if you assume friction to be negligible)

Using the definition of impulse, the change in momentum of car 1 is given by

,

where is the force on car 1 due to car 2, and is the time the force acts (the duration

of the collision). Intuitively, it seems obvious that the collision time is the same for both

cars, but it is only true for objects traveling at ordinary speeds. This assumption must be

modified for objects travelling near the speed of light, without affecting the result that

momentum is conserved.

Similarly, the change in momentum of car 2 is

,

Where is the force on car 2 due to car 1, and we assume the duration of the collision

is the same for both cars. We know from Newton’s third law that , and so

Thus, the changes in momentum are equal and opposite, and

Because the changes in momentum add to zero, the total momentum of the two-car

system is constant. That is,
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,

Where are the momenta of cars 1 and 2 after the collision. (We often use

primes to denote the final state.)

This result—that momentum is conserved—has validity far beyond the preceding one-

dimensional case. It can be similarly shown that total momentum is conserved for any

isolated system, with any number of objects in it. In equation form, the conservation of

momentum principle for an isolated system is written

Or

Where is the total momentum (the sum of the momenta of the individual objects in

the system) and is the total momentum some time later. (The total momentum can

be shown to be the momentum of the center of mass of the system.) An isolated system

is defined to be one for which the net external force is zero

ELASTIC AND INELASTIC COLLISIONS

Elastic Collisions in One Dimension

Let us consider several types of two-object collisions. These collisions are the easiest

to analyze, and they illustrate many of the physical principles involved in collisions.

The conservation of momentum principle is particularly useful here, and it can be used

whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-

dimensional problem. An elastic collision is one that also conserves internal kinetic

energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the

system. Figure 3 below illustrates an elastic collision in which internal kinetic energy and

momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons

striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic—some

kinetic energy is always converted into other forms of energy such as heat transfer due

to friction and sound. One macroscopic collision that is nearly elastic is that of two

steel blocks on ice. Another nearly elastic collision is that between two carts with spring

bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily

allowing nearly elastic collisions on them.
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Figure 3: An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects

we can use the equations for conservation of momentum and conservation of internal

kinetic energy. First, the equation for conservation of momentum for two objects in a

one-dimensional collision is

Or
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Where the primes (‘) indicate values after the collision. By definition, an elastic collision

conserves internal kinetic energy, and so the sum of kinetic energies before the collision

equals the sum after the collision. Thus,

Expresses the equation for conservation of internal kinetic energy in a one-dimensional

collision.

Example 4

Calculating velocities following an elastic collision:

Calculate the velocities of two objects following an elastic collision, given that

.

Answer: For this problem, note that and use conservation of momentum.

Thus,

Using conservation of internal kinetic energy and that ,

Solving the first equation (momentum equation) for

.

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable

v′2">⯑′2,leaving only as an unknown. There are two solutions to any quadratic equation; in this example,

they are and . Both solutions may or may not be meaningful. In this

case, the first solution is the same as the initial condition. The first solution thus represents the situation before

the collision is discarded. The second solution is negative, meaning that the first object

bounces backward. When this negative value of is used to find the velocity of the second
object after the collision, we get

Collision Lab – PhET Simulation
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One or more interactive elements has been excluded from this version of the text. You can view them

online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#iframe-phet-1

Inelastic Collisions in One Dimension

We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic

collision is one in which the internal kinetic energy changes (it is not conserved). This

lack of conservation means that the forces between colliding objects may remove or add

internal kinetic energy. Work done by internal forces may change the forms of energy

within a system. For inelastic collisions, such as when colliding objects stick together, this

internal work may transform some internal kinetic energy into heat transfer. Or it may

convert stored energy into internal kinetic energy, such as when exploding bolts separate

a satellite from its launch vehicle.

Figure 4 below shows an example of an inelastic collision. Two objects that have equal

masses head toward one another at equal speeds and then stick together. Their total

internal kinetic energy is initially . The two objects come to rest

after sticking together, conserving momentum. But the internal kinetic energy is zero

after the collision. A collision in which the objects stick together is something called a

perfectly inelastic collision because it reduces internal kinetic energy more than does

any other type of inelastic collision. In fact, such a collision reduces internal kinetic

energy to the minimum it can have while still conserving momentum.

Perfectly inelastic collision – a collision in which the objects stick together is sometimes

called “perfectly inelastic.”

Figure 4: An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is
not conserved. (a) Two objects of equal mass initially head directly toward one another at the same speed. (b) The
objects stick together (a perfectly inelastic collision), and so their final velocity is zero. The internal kinetic energy of
the system changes in any inelastic collision and is reduced to zero in this example.
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Example 5

Calculating final velocity and energy release – two carts collide:

In the collision pictured below in Figure 5, two carts collide inelastically. Cart 1 (denoted carries a
spring which is initially compressed. During the collision, the spring releases its
potential energy and converts it to internal kinetic energy. The mass of cart 1
and the spring is , and the cart and the spring together have an initial velocity of .

Cart 2 (denoted has a mass of 0.500 kg and an initial velocity of -0.500m/s. After the

collision, cart 1 is observed to recoil with a velocity of -4.00m/s.

(a) What is the final velocity of cart 2?

(b) How much energy was released by the spring (assuming all of it was converted into internal kinetic

energy)?

Figure 5: An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision,
examined in the Example above, the potential energy of a compressed spring is released during the collision and is
converted to internal kinetic energy.

Answer:

(a) the equation for conservation of momentum in a two-object system is

.

The only unknown in this equation is . Solving for and substituting known values into the
previous equation yields.
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(b) the internal kinetic energy before the collision is

After the collision, the internal kinetic energy is

The change in internal kinetic energy is thus

Collisions of Point Masses in Two Dimensions

In the previous two sections, we considered only one-dimensional collisions; during

such collisions, the incoming and outgoing velocities are all along the same line. But

what about collisions, such as those between billiard balls, in which objects scatter to

the side? These are two-dimensional collisions, and we shall see that their study is an

extension of the one-dimensional analysis already presented. The approach taken (similar

to the approach in discussing two-dimensional kinematics and dynamics) is to choose

a convenient coordinate system and resolve the motion into components along

perpendicular axes. Resolving the motion yields a pair of one-dimensional problems to

be solved simultaneously.

One complication arising in two-dimensional collisions is that the objects might rotate

before or after their collision. For example, if two ice skaters hook arms as they pass by

one another, they will spin in circles. To avoid rotation, we consider only the scattering

of point masses – that is, structureless particles that cannot rotate or spin.

We start by assuming that , so that momentum p is conserved. The simplest

collision is one in which one of the particles is initially at rest. See Figure 4 below.

The best choice for a coordinate system is one with an axis parallel to the velocity

of the incoming particle, as shown in Figure 6. Because momentum is conserved, the
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components of momentum along the x- and y- axes will also be conserved,

but with the chosen coordinate system, is initially zero and is the momentum

of the incoming particle. Both facts simplify the analysis. (Even with the simplifying

assumptions of point masses, one particle initially at rest, and a convenient coordinate

system, we still gain new insights into nature from the analysis of two-dimensional

collisions.)

Figure 6: A two-dimensional collision with the coordinate system chosen so that is initially at rest and is parallel to the x
-axis. This coordinate system is sometimes called the laboratory coordinate system, because many scattering experiments have a
target that is stationary in the laboratory, while particles are scattered from it to determine the particles that make-up the target
and how they are bound together. The particles may not be observed directly, but their initial and final velocities are.

Along the x-axis, the equation for conservation of momentum is

Where the subscripts denote the particles and axes, and the primes denote the situation

after the collision. In terms of masses and velocities, this equation is

But because particle 2 is initially at rest, this equation becomes

The components of the velocities along the x-axis have the form . Because particle

1 initially moves along the x-axis, we find .

Conservation of momentum along the x-axis gives the following equation:
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Where are shown in Figure 4.

Along the y-axis, the equation for conservation of momentum is

Or

But is zero, because particle 1 initially moves along the x-axis. Because particle 2 is

initially at rest, is also zero. The equation for conservation of momentum along the

y-axis becomes

The components of the velocities along the y-axis have the form . Thus, the

conservation of momentum along the y-axis gives the following equation:

Making Connections: Real World Connections

We have seen, in one-dimensional collisions when momentum is conserved, that the

center-of-mass velocity of the system remains unchanged as a result of the collision. If

you calculate the momentum and center-of-mass velocity before the collision, you will

get the same answer as if you calculate both quantities after the collision. This logic also

works for two-dimensional collisions.

For example, consider two cars of equal mass. Car A is driving east (+x-direction) with

a speed of 40 m/s. Car B is driving north (+y-direction) with a speed of 80 m/s. What is

the velocity of the center-of-mass of this system before and after an inelastic collision, in

which the cars move together as one mass after the collision?

Since both cars have equal mass, the center-of-mass velocity components are just the

average of the components of the individual velocities before the collision. The x-

component of the center of mass velocity is 20 m/s, and the y-component is 40 m/s.

Using momentum conservation for the collision in both the x-component and y-

component yields similar answers:
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Since the two masses move together after the collision, the velocity of this combined

object is equal to the center-of-mass velocity. Thus, the center-of-mass velocity before

and after the collision is identical, even in two-dimensional collisions, when momentum

is conserved.

ELASTIC AND INELASTIC COLLISIONS

Elastic and Inelastic Collisions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-9

Deriving the Shortcut to Solve Elastic Collision Problems

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-10

How to Use the Shortcut for Solving Elastic Collisions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-11

BALANCE FORCES ON A STATIONARY OBJECT IN EQUILIBRIUM

EQUILIBRIUM FORCES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-12

Check Your Understanding: Equilibrium Forces
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#h5p-151

STATIC EQUILIBRIUM

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-13

Balancing Act PhET Simulation

One or more interactive elements has been excluded from this version of the text. You can view them

online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#iframe-phet-2

THE FIRST CONDITION FOR EQUILIBRIUM

The first condition necessary to achieve equilibrium is that the net external force on the system

must be zero. Expressed as an equation, this is simply

Note that if net F is zero, then the net external force in any direction is zero. For example,

the net external forces along the typical x- and y-axes are zero. This is written as

.

THE SECOND CONDITION FOR EQUILIBRIUM

The second condition necessary to achieve equilibrium involves avoiding accelerated rotation

(maintaining a constant angular velocity). A rotating body or system can be in equilibrium if its

rate of rotation is constant and remains unchanged by the forces acting on it. The magnitude,

direction, and point of application of the force are incorporated into the definition of the

physical quantity called torque.
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Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in

changing or accelerating a rotation (changing the angular velocity over a period of time). In

equation form, the magnitude of torque is defined to be

Where is the symbol for torque, r is the distance from the pivot point to the point where the

force is applied, F is the magnitude of the force, and is the angle between the force and the

vector directed from the point of application to the pivot point.

Figure 7: A force applied to an object can produce a torque, which
depends on the location of the pivot point. The three factors

for pivot point A on a body are shown here – r is the
distance from the chosen pivot point to the point where the force F is
applied, and is the angle between F and the vector directed from
the point of application to the pivot point. If the object can rotate
around point A, it will rotate counterclockwise. This means that
torque is counterclockwise relative to pivot A.

The perpendicular lever arm is the shortest distance from the pivot point to the line along

which F acts; it is shown as a dashed line in Figure 7. Note that the line segment that defines the

distance is perpendicular to F, as its name implies. It is sometimes easier to find or visualize

than to find both r and . In such cases, it may be more convenient to use rather

than for torque, but both are equally valid.

The SI unit of torque is newtons time meters, usually written as . For example, if you

push perpendicular to the door with a force of 40 N at a distance of 0.800 m from the hinges,

you exert a torque of relative to the hinges. If you

reduce the force to 20 N, the torque is reduced to , and so on.
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Now, the second condition necessary to achieve equilibrium is that the net external torque on a system

must be zero. An external torque is one that is created by an external force. You can choose

the point around which the torque is calculated. The point can be the physical pivot point of

a system or any other point in space—but it must be the same point for all torques. If the

second condition (net external torque on a system is zero) is satisfied for one choice of pivot

point, it will also hold true for any other choice of pivot point in or out of the system of

interest. (This is true only in an inertial frame of reference.) The second condition necessary to

achieve equilibrium is stated in equation form as where net means total. Torques,

which are in opposite directions are assigned opposite signs. A common convention is to call

counterclockwise (ccw) torques positive and clockwise (cw) torques negative.

When two children balance a seesaw as shown in Figure 8, they satisfy the two conditions for

equilibrium. Most people have perfect intuition about seesaws, knowing that the lighter child

must sit farther from the pivot and that a heavier child can keep a lighter one off the ground

indefinitely.

Figure 8: Two children balancing a seesaw satisfy both conditions for equilibrium. The lighter child sits farther
from the pivot to create a torque equal in magnitude to that of the heavier child.

Example 6

The two children shown in Figure 8 above are balanced on a seesaw of negligible mass. (This assumption is

made to keep the example simple). The first child has a mass of 26.0 kg and sits 1.60 m from the pivot. (a) If the

second child has a mass of 32.0 kg, how far is she from the pivot? (b) What is the supporting force exerted by

the pivot?
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Strategy:

Both conditions for equilibrium must be satisfied. In part (a), we are asked for a distance; thus, the second

condition (regarding torques) must be used, since the first (regarding only forces) has no distances in it. To apply

the second condition for equilibrium, we first identify the system of interest to be the seesaw plus the two

children. We take the supporting pivot to be the point about which the torques are calculated. We then identify

all external forces acting on the system.

Solution (a)

The three external forces acting on the system are the weights of the two children and the supporting force of

the pivot. Let us examine the torque produced by each. Torque is defined to be

Here , so that for all three forces. That means for all three. The torques

exerted by the three forces are first,

Second,

And third,

= 0

Note that a minus sign has been inserted into the second question because this torque is clockwise and is

therefore negative by convention. Since act directly on the pivot point, the distance is zero. A force acting

on the pivot cannot cause a rotation, just as pushing directly on the hinges of a door will not cause it to rotate.

Now, the second condition for equilibrium is that the sum of the torques on both children is zero. Therefore

Or

Weight is mass times the acceleration due to gravity. Entering mg for w, we get

Solve this for the unknown :

The quantities on the right side of the equation are known; thus, is
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As expected, the heavier child must sit closer to the pivot (1.30 m versus 1.60 m) to balance the seesaw.

Solution (b)

This part asks for a force . The easiest way to find it is to use the first condition for equilibrium, which is

The forces are all vertical, so that means we are dealing with a one-dimension problem along the vertical axis;

hence, the condition can be written as

Where we again call the vertical axis the y-axis. Choosing upward to be the positive direction, and using plus

and minus signs to indicate the directions of the forces, we see that

This equation yields what might have been guessed at the beginning:

So, the pivot supplies a supporting force equal to the total weight of the system:

Entering known values gives

Discussion:

The two results make intuitive sense. The heavier child sits closer to the pivot. The pivot supports the weight of

the two children. Part (b) can also be solved using the second condition for equilibrium, since both distances are

known, but only if the pivot point is chosen to be somewhere other than the location of the seesaw’s actual

pivot!

Several aspects of the preceding example have broad implications. First, the choice of the pivot as the point

around which torques are calculated simplified the problem. Since is exerted on the pivot point, its lever arm

is zero. Hence, the torque exerted by the supporting force is zero relative to that pivot point. The second

condition for equilibrium holds for any choice of pivot point, and so we choose the pivot point to simplify the

solution of the problem.

Second, the acceleration due to gravity canceled in this problem, and we were left with a ratio of masses. This

will not always be the case. Always enter the correct forces – do not jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of the seesaw, yet we treated the weights as if each
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force were exerted at a single point. This is not an approximation – the distances are the distances

to points directly below the center of gravity of each child.

Finally, not that the concept of torque has an importance beyond static equilibrium. Torque plays the same role

in rotational motion that force plays in linear motion.

STABILITY

A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences

a net force or torque in a direction opposite to the direction of the displacement. For example,

a marble at the bottom of a bowl will experience a restoring force when displaced from its

equilibrium position. This force moves it back toward the equilibrium position. Most systems

are in stable equilibrium, especially for small displacements. For another example of stable

equilibrium, see the pencil in Figure 9.

Figure 9: This pencil is in the condition of equilibrium. The net
force on the pencil is zero and the total torque about any pivot is
zero.

A system is in unstable equilibrium if, when displaced, it experiences a net force or torque

in the same direction as the displacement from equilibrium. A system in unstable equilibrium

accelerates away from its equilibrium position if displaced even slightly. An obvious example

is a ball resting on top of a hill. Once displaced, it accelerates away from the crest. See Figures

10-13 for examples of unstable equilibrium.
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Figure 10: If the pencil is displaced slightly to the side
(counterclockwise), it is no longer in equilibrium. Its weight
produces a clockwise torque that returns the pencil to its
equilibrium position.

Figure 11: If the pencil is displaced too far, the torque caused by its weight
changes to counterclockwise and causes the displacement to increase.
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Figure 12: This figure shows unstable equilibrium, although both
conditions for equilibrium are satisfied.
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Figure 13: If the pencil is displaced even slightly, a torque is created
by its weight that is in the same direction as the displacement,
causing the displacement to increase.

A system is in neutral equilibrium if its equilibrium is independent of displacements from its

original position. A marble on a flat horizontal surface is an example. Combinations of these

situations are possible. For example, a marble on a saddle is stable for displacements toward

the front or back of the saddle and unstable for displacements to the side. Figures 14-15 show

another example of neutral equilibrium.
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Figure 14: Here we see neutral equilibrium. The cg of a sphere on a
flat surface lies directly above the point of support, independent of
the position on the surface. The sphere is therefore in equilibrium in
any location, and if displaced, it will remain put.

Figure 15: Because it has a circular cross section, the pencil is in neutral
equilibrium for displacements perpendicular to its length.

142 MAVS OPEN PRESS



Center of Gravity

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-14

Dynamic Balance

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#oembed-15

Check Your Understanding: Stability

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=517#h5p-152

RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section explains the relevance of traffic safety and superelevation to transportation engineering

coursework.

TRAFFIC SAFETY

Avoiding collisions (or crashes) and in case collisions do occur minimization of harm to human

beings involved are of critical importance in transportation engineering practice. Practitioners

and researchers recommend use of term “crashes” or “collisions” instead of “accidents” so that

they are thought of as preventable events instead of inevitable incidents with no possible

avoidance/mitigation measures. Crashes are classified according to their severity from

property-damage-only (PDO) to fatal, and the crash severity is highly correlated with the

impact speed, and hence the momentum. Mitigation measures, such as guardrails, traffic signs

with breakaway poles, crash attenuators, air bags, seat belts, and child seats are all implemented

to reduce the severities of crashes according to the momentum principles, described in the
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section titled “Use of Momentum Preservation to Describe the Post-Collision Movement of

Objects.”

SUPERELEVATION

Superelevation, i.e., raising of outer edge of the pavement relative to the inner edge, is provided

to support higher speed travel along a horizontal curve. The banking helps provide the required

inward force to keep vehicle on a circular motion. Figure 14 illustrates a superelevated curved

segment of racetrack, where the relative elevation of the outer edge is more pronounced

(compared to public roadways) due to significantly higher speeds of race cars. The formula for

estimating the required superelevation for a given design speed is based on the principles of

balancing forces described in the above section titled “Balance Forces on a Stationary Object in

Equilibrium.”

Figure 16: Superelevated segment of a racetrack with raised outer edge

Key Takeaways

• Transportation engineers and safety professionals recognize that crashes and collisions are not

“accidents” in the sense that these events are not inevitable, can be prevented, and their impacts can be

mitigated. One key aspect of crash impact mitigation is to reduce the severity of collisions that do

occur, especially those involving VRUs. The speed-momentum relationships discussed in this chapter

are essential to developing this understanding.

• Superelevation or banking refers to the raised outer edge of a roadway segment on a horizontal curve.
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It is provided to counteract the tendency of a vehicle to roll outward on a curve. With a gravitational

force component pulling the vehicle inward, the superelevation helps keep the vehicle on a circular

path providing stability and control for negotiating circular curve segments at higher speeds.
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CHAPTER 7: WAVES AND DOPPLER EFFECT

Propagation of sound waves is critical to understanding and mitigating the noise pollution resulting

from transportation projects. A related concept, i.e., the Doppler Effect, is helpful in understanding

the use of radar guns for traffic speed enforcement and spot speed studies.

Learning Objectives

• Define a wave and its basic properties (e.g., Period, Wavelength, and Frequency)

• List different wave types

• Describe the movement of sound waves

• Describe Doppler Effect and its implications

• Identify topics in the introductory transportation engineering courses that build on the Physics

concept discussed in this course

WAVE PROPERTIES

What do we mean when we say something is a wave? The most intuitive and easiest wave to imagine

is the familiar water wave. More precisely, a wave is a disturbance that propagates or moves from

the place it was created. For water waves, the disturbance is in the surface of the water, perhaps

created by a rock thrown into a pond or by a swimmer splashing the surface repeatedly. For sound

waves, the disturbance is a change in air pressure, perhaps created by the oscillating cone inside a

speaker. For earthquakes, there are several types of disturbances, including disturbance of Earth’s

surface and pressure disturbances under the surface. Even radio waves are most easily understood

using an analogy with water waves. Visualizing water waves is useful because there is more to it than

just a mental image. Water waves exhibit characteristics common to all waves, such as amplitude,

period, frequency, and energy. All wave characteristics can be described by a small set of underlying

principles.

WAVE MOVEMENT

A wave is a disturbance that propagates or moves from the place it was created. The simplest

waves repeat themselves for several cycles and are associated with simple harmonic motion.

Let us start by considering the simplified water wave in Figure 1 below. The wave is an up
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and down disturbance of the water surface. It causes a sea gull to move up and down in simple

harmonic motion as the wave crests and troughs (peaks and valleys) pass under the bird. The

time for one complete up and down motion is the wave’s period ⯑. The wave’s frequency

. The wave itself moves to the right in the figure. This movement of the wave is actually

the disturbance moving to the right, not the water itself (or the bird would move to the right).

We define wave velocity to be the speed at which the disturbance moves. Wave velocity is

sometimes also called the propagation velocity or propagation speed because the disturbance

propagates from one location to another.

Figure 1: An idealized ocean wave passes under a seagull that bobs up and down in simple harmonic motion. The wave has wavelength λ,
which is the distance between adjacent identical parts of the wave. The up and down disturbance of the surface propagates parallel to the
surface at a speed .

The water wave in Figure 1 also has a length associated with it, called its wavelength ⯑, the

distance between adjacent identical parts of a wave. (⯑ is the distance parallel to the direction

of propagation.) The speed of propagation is the distance the wave travels in a given time,

which is one wavelength in the time of one period. In equation form, that is

Or

This fundamental relationship holds for all types of waves. For water waves, is the speed of

a surface wave; for sound, is the speed of sound; and for visible light, is the speed of

light, for example.

Applying the Science Practices: Different Types of Waves

Consider a spring fixed to a wall with a mass connected to its end. This fixed point on the wall

exerts a force on the complete spring-and-mass system, and this implies that the momentum

of the complete system is not conserved. Now, consider energy. Since the system is fixed to
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a point on the wall, it does not do any work; hence, the total work done is conserved, which

means that the energy is conserved. Consequently, we have an oscillator in which energy

is conserved but momentum is not. Now, consider a system of two masses connected to

each other by a spring. This type of system also forms an oscillator. Since there is no fixed

point, momentum is conserved as the forces acting on the two masses are equal and opposite.

Energy for such a system will be conserved because there are no external forces acting on

the spring-two-masses system. It is clear from above that, for momentum to be conserved,

momentum needs to be carried by waves. This is a typical example of a mechanical oscillator

producing mechanical waves, which need a medium in which to propagate. Sound waves are

also examples of mechanical waves. Some types of waves can travel in the absence of a medium

of propagation. Such waves: they are called “electromagnetic waves.” Light waves are examples

of electromagnetic waves. Electromagnetic waves are created by the vibration of electric charge.

which This vibration creates a wave with both electric and magnetic field components.

Traverse and Longitudinal Waves

A simple wave consists of a periodic disturbance that propagates from one place to another. The

wave in Figure 2 below propagates in the horizontal direction while the surface is disturbed in

the vertical direction. Such a wave is called a transverse wave or shear wave; in such a wave,

the disturbance is perpendicular to the direction of propagation. In contrast, in a longitudinal

wave or compressional wave, the disturbance is parallel to the direction of propagation. Figure

3 below shows an example of a longitudinal wave. The size of the disturbance is its amplitude X

and is completely independent of the speed of propagation .

Figure 2: In this example of a transverse wave, the wave propagates horizontally, and the disturbance in the cord is in the vertical
direction.
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Figure 3: In this example of a longitudinal wave, the wave propagates horizontally, and the disturbance in the cord is also in the horizontal
direction.

Waves may be transverse, longitudinal, or a combination of the two. (Water waves are actually

a combination of transverse and longitudinal. The simplified water wave illustrated in Figure 1

shows no longitudinal motion of the bird.) The waves on the strings of musical instruments are

transverse—so are electromagnetic waves, such as visible light.

Sound waves in air and water are longitudinal. Their disturbances are periodic variations in

pressure that are transmitted in fluids. Fluids do not have appreciable shear strength, and thus

the sound waves in them must be longitudinal or compressional. Sound in solids can be both

longitudinal and transverse.

Earthquake waves under Earth’s surface also have both longitudinal and transverse components

(called compressional or P-waves and shear or S-waves, respectively). These components have

important individual characteristics—they propagate at different speeds, for example.

Earthquakes also have surface waves that are similar to surface waves on water.

BASIC PROPERTIES OF WAVES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#oembed-1

Check Your Understanding: Basic Properties of Waves
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#h5p-1

WAVE ON A STRING (SIMULATION)

One or more interactive elements has been excluded from this version of the text. You can view them

online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#iframe-phet-1

ENERGY IN WAVES: INTENSITY

All waves carry energy. The energy of some waves can be directly observed. Earthquakes can

shake whole cities to the ground, performing the work of thousands of wrecking balls.

Loud sounds pulverize nerve cells in the inner ear, causing permanent hearing loss. Ultrasound

is used for deep-heat treatment of muscle strains. A laser beam can burn away a malignancy.

Water waves chew up beaches.

The amount of energy in a wave is related to its amplitude. Large-amplitude earthquakes

produce large ground displacements. Loud sounds have higher pressure amplitudes and come

from larger-amplitude source vibrations than soft sounds. Large ocean breakers churn up the

shore more than small ones. More quantitatively, a wave is a displacement that is resisted by a

restoring force.

The energy effects of a wave depend on time as well as amplitude. For example, the longer

deep-heat ultrasound is applied, the more energy it transfers. Waves can also be concentrated

or spread out. Sunlight, for example, can be focused to burn wood. Earthquakes spread out, so

they do less damage the farther they get from the source. In both cases, changing the area the

waves cover has important effects. All these pertinent factors are included in the definition of

intensity I as power per unit area:

Where P is the power carried by the wave through area A. The definition of

intensity is valis for any energy in transit, including that carried by waves. The SI unit for

intensity is watts per square meter . For example, infrared and visible energy from

the Sun impinge on Earth at an intensity of 1300 just above the atmosphere.
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There are other intensity-related units in use, too. The most common is the
decibel. For example, a 90-decibel sound level corresponds to an intensity
of . (This quantity is not much power per unit area considering that 90 decibels is

a relatively high sound level. Decibels will be discussed in some detail in a later chapter.)

DESCRIBE THE MOVEMENT OF SOUND WAVES IN THE ENVIRONMENT

In this section, you will learn how to understand the physics, speed, wavelength, intensity, and level of

sound by reading each description along with watching the videos included. Also, short problems to

check your understanding are included.

PHYSICS OF HEARING: SOUND

Sound can be used as a familiar illustration of waves. Because hearing is one of our most

important senses, it is interesting to see how the physical properties of sound correspond to

our perceptions of it. Hearing is the perception of sound, just as vision is the perception of

visible light. The physical phenomenon of sound is defined to be a disturbance of matter that is

transmitted from its source outward. Sound is a wave. The amplitude of a sound wave decreases

with distance from its source, because the energy of the wave is spread over a larger and larger

area. But it is also absorbed by objects, such as the eardrum.

A vibrating string produces a sound wave as illustrated in Figures 4, 5, and 6. As the string

oscillates back and forth, it transfers energy to the air, mostly as thermal energy created by

turbulence. But a small part of the string’s energy goes into compressing and expanding the

surrounding air, creating slightly higher and lower local pressures. These compressions (high

pressure regions) and rarefactions (low pressure regions) move out as longitudinal pressure

waves having the same frequency as the string—they are the disturbance that is a sound wave.

(Sound waves in air and most fluids are longitudinal because fluids have almost no shear

strength. In solids, sound waves can be both transverse and longitudinal.) Figure 6 shows a

graph of gauge pressure versus distance from the vibrating string.

Figure 4: A vibrating string moving to the right compresses the air in front of it and
expands the air behind it.
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Figure 5: As the string moves to the left, it creates another compression and
rarefaction as the ones on the right move away from the string.

Figure 6: After many vibrations, these are a series of compressions and
rarefactions moving out from the string as a sound wave. The graph shows gauge
pressure versus distance from the source. Pressures vary only slightly from
atmospheric for ordinary sounds.

SPEED OF SOUND, FREQUENCY, AND WAVELENGTH

Sound, like all waves, travels at a certain speed and has the properties of frequency and

wavelength. wavelength. You can observe direct evidence of the speed of sound while

watching a fireworks display. The flash of an explosion is seen well before its sound

is heard, implying both that sound travels at a finite speed and that it is much slower

than light. You can also directly sense the frequency of a sound. Perception of frequency

is called pitch. The wavelength of sound is not directly sensed, but indirect evidence
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is found in the correlation of the size of musical instruments with their pitch. Small

instruments, such as a piccolo, typically make high-pitch sounds, while large instruments,

such as a tuba, typically make low-pitch sounds. High pitch means small wavelength,

and the size of a musical instrument is directly related to the wavelengths of sound it

produces. So, a small instrument creates short-wavelength sounds. Similar arguments

hold that a large instrument creates long-wavelength sounds.

The relationship of the speed of sound, its frequency, and wavelength is the same as for

all waves:

Where is the speed of sound, f is its frequency, and ⯑">⯑ is its
wavelength. The wavelength of a sound is the distance between
adjacent identical parts of a wave – for example, between adjacent
compressions as illustrated in Figure 7. The frequency is the same as
that of the source and is the number of waves that pass a point per unit
of time.

Figure 7: A sound wave emanates from a source vibrating at a frequency f">⯑, propagates at , and has a
wavelength ⯑

The speed of sound can change when sound travels from one medium to another.

However, the frequency usually remains the same because it is like a driven oscillation

and has the frequency of the original source. If changes and f remains the
same, then the wavelength ⯑">⯑must change. That is, because
, the higher the speed of a sound, the greater its wavelength for a given frequency.

Check Your Understanding: Speed of Sound, Frequency, and Wavelength
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#h5p-7

SOUND INTENSITY AND SOUND LEVEL

In a quiet forest, you can sometimes hear a single leaf fall to the ground. After settling into

bed, you may hear your blood pulsing through your ears. But when a passing motorist

has his stereo turned up, you cannot even hear what the person next to you in your car

is saying. We are all very familiar with the loudness of sounds and aware that they are

related to how energetically the source is vibrating. In cartoons depicting a screaming

person (or an animal making a loud noise), the cartoonist often shows a gaping mouth

with a vibrating uvula, the hanging tissue at the back of the mouth, to suggest a loud

sound coming from the throat (see Figure 8 below). High noise exposure is hazardous to

hearing, and it is common for musicians to have hearing losses that are sufficiently severe

that they interfere with the musicians’ abilities to perform. The relevant physical quantity

is sound intensity, a concept that is valid for all sounds whether or not they are in the

audible range.

Intensity is defined to be the power per unit area carried by a wave. Power is the rate at

which energy is transferred by the wave. In equation form intensity , where P

is the power through an area A.
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Figure 8: Graphs of the gauge pressures in two sound waves of different intensities.
The more intense sound is produced by a source that has larger-amplitude
oscillations and has greater pressure maxima and minima. Because pressures are
higher in the greater-intensity sound, it can exert larger forces on the objects it
encounters.

Sound intensity levels are quoted in decibels (dB) much more often than sound intensities

in watts per meter squared. Decibels are the unit of choice in the scientific literature

as well as in the popular media. The reasons for this choice of units are related to how

we perceive sounds. How our ears perceive sound can be more accurately described by

the logarithm of the intensity rather than directly to the intensity. The sound intensity

level in decibels of a sound having an intensity I in watts per meter squared is defined

to be is a reference intensity. In

particular, is the lowest or threshold intensity of sound a person with normal hearing

can perceive at a frequency of 1000 Hz. Sound intensity level is not the same as intensity.

Because is defined in terms of a ratio, it is a unitless quantity telling you the level of the

sound relative to a fixed standard , in this case). The units of decibels (dB)

are used to indicate this ratio is multiplied by 10 in its definition. The bel, upon which the

decibel is based, is named for Alexander Graham Bell, the inventor of the telephone.
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Table 1: Sound Intensity Levels and Intensities 1

Sound intensity
level β (dB) Intensity I(W/m2) Example/effect

00">0
\begin{equation}
1 \times 10^{-12}
\end{equation}

Threshold of hearing at 1000 Hz

1010">10 1×10–111×10–11">1×10–11 Rustle of leaves

2020">20 1×10–101×10–10">1×10–10 Whisper at 1 m distance

3030">30 1×10–91×10–9">1×10–9 Quiet home

4040">40 1×10–81×10–8">1×10–8 Average home

5050">50 1×10–71×10–7">1×10–7 Average office, soft music

6060">60 1×10–61×10–6">1×10–6 Normal conversation

7070">70 1×10–51×10–5">1×10–5 Noisy office, busy traffic

8080">80 1×10–41×10–4">1×10–4 Loud radio, classroom lecture

9090">90 1×10–31×10–3">1×10–3
Inside a heavy truck; damage from prolonged exposure1

100100">100 1×10–21×10–2">1×10–2 Noisy factory, siren at 30 m; damage from 8 h per day
exposure

110110">110 1×10–11×10–1">1×10–1 Damage from 30 min per day exposure

120120">120 11">1 Loud rock concert, pneumatic chipper at 2 m; threshold of
pain

140140">140 1×1021×102">1×102 Jet airplane at 30 m; severe pain, damage in seconds

160160">160 1×1041×104">1×104 Bursting of eardrums

The decibel level of a sound having the threshold intensity of is dB,

because . That is, the threshold of hearing is 0 decibels. Table 1 gives levels in

decibels and intensities in watts per meter squared for some familiar sounds.

Check Your Understanding: Sound Intensity and Sound Level

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#h5p-8

1. Several government agencies and health-related professional associations recommend that 85 dB not be exceeded for

8-hour daily exposures in the absence of hearing protection.
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WAVE INTERFERENCE (PHET SIMULATION)

One or more interactive elements has been excluded from this version of the text. You can view them

online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#iframe-phet-2

SOUND WAVES AND THEIR SOURCES (1933 MOVIE CLIP)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#oembed-2

ACOUSTICS AND YOUR ENVIRONMENT: THE BASICS OF SOUNDS AND

HIGHWAY TRAFFIC NOISE (48 MIN)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#oembed-3

DESCRIBE THE DOPPLER EFFECT IN THE CONTEXT OF WAVES EMANATING FROM A

MOVING SOURCE

The characteristic sound of a motorcycle buzzing by is an example of the Doppler effect. The high-

pitch scream shifts dramatically to a lower-pitch roar as the motorcycle passes by a stationary

observer. The closer the motorcycle brushes by, the more abrupt the shift. The faster the motorcycle

moves, the greater the shift. We also hear this characteristic shift in frequency for passing race cars,

airplanes, and trains.

The Doppler effect is an alteration in the observed frequency of a sound due to motion of either the

source or the observer. Although less familiar, this effect is easily noticed for a stationary source and

moving observer. For example, if you ride a train past a stationary warning bell, you will hear the

bell’s frequency shift from high to low as you pass by. The actual change in frequency due to relative

motion of source and observer is called a Doppler shift. The Doppler effect and Doppler shift are

named for the Austrian physicist and mathematician Christian Johann Doppler (1803–1853), who did

experiments with both moving sources and moving observers. Doppler, for example, had musicians
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play on a moving open train car and also play standing next to the train tracks as a train passed by.

Their music was observed both on and off the train, and changes in frequency were measured.

What causes the Doppler shift? Figures 9, 10, and 11 compare sound waves emitted by stationary

and moving sources in a stationary air mass. Each disturbance spreads out spherically from the point

where the sound was emitted. If the source is stationary, then all of the spheres representing the air

compressions in the sound wave centered on the same point, and the stationary observers on either

side see the same wavelength and frequency as emitted by the source, as seen in Figure 9. If the source

is moving, as in Figure 10, then the situation is difference. Each compression of the air moves out in

a sphere from the point where it was emitted, but the point of emission moves. This moving emission

point causes the air compressions to be closer together on one side and farther apart on the other.

Thus, the wavelength is shorter in the direction the source is moving (on the right in Figure 10), and

longer in the opposite direction (on the left in Figure 10). Finally, if the observers move, as in Figure

11, the frequency at which they receive the compressions changes. The observer moving toward the

source receives them at a higher frequency, and the person moving away from the source receives

them at a lower frequency.

Figure 9: Sounds emitted by a source spread out in spherical waves. Because the source, observers, and air are stationary, the
wavelength and frequency are the same in all directions and to all observers.
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Figure 10: Sounds emitted by a source moving to the right spread out from the points at which they were emitted. The
wavelength is reduced and, consequently, the frequency is increased in the direction of motion, so that the observer on
the right hears a higher-pitch sound. The opposite is true for the observer on the left, where the wavelength is increased,
and the frequency is reduced.

Figure 11: The same effect is produced when the observers move relative to the source. Motion toward the
source increases frequency as the observer on the right passes through more wave crests than she would if
stationary. Motion away from the source decreases frequency as the observer on the left passes through
fewer wave crests, he would if stationary.

We know that wavelength and frequency are related by , where is the fixed speed of

sound. The sound moves in a medium and has the same speed in that medium whether the source
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is moving or not. The f multiplied by is a constant. Because the observer on the fight in the Figure 10

receives a shorter wavelength, the frequency she receives must be higher. Similarly, the observer on

the left receives a longer wavelength, and hence he hears a lower frequency. The same thing happens

in Figure 11. A higher frequency is received by the observer moving toward the source, and a lower

frequency is received by an observer moving away from the source. In general, then, relative motion

of source and observer toward one another increases the received frequency. Relative motion apart

decreases frequency. The greater the relative speed is, the greater the effect.

WHAT IS THE DOPPLER EFFECT?

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#oembed-4

Check Your Understanding: What is the Doppler Effect?

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#h5p-6

IDENTIFY THE CAUSES OF NOISE FROM THE TRANSPORTATION SYSTEM

In this section, you will learn about the causes of transportation system noise. To gain a better

understanding of the many different noises associated with our environment, please read the article

“Traffic Noise and Transportation” by The Center for Environmental Excellence by the American

Association of State Highway and Transportation Officials (AASHTO).

ADSORPTIVE SOUND WALL SYSTEMS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=85#oembed-5
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RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

In this section, you will learn about spot speed study and speed limit enforcement helping ensure

that roadway design is consistent with speed on roadways and highways. You will also learn about

sustainable transportation planning and development.

SPOT SPEED STUDY AND SPEED LIMIT ENFORCEMENT

The information from spot speed studies is critical for the enforcement and implementation of

speed management strategies if needed. A Doppler radar, either hand-held, vehicle-mounted,

or poll-mounted, has been one of the most commonly used tools for speed limit enforcement.

These devices are also useful in conducting spot speed studies to ensure that the roadway design

is consistent with the desired speed for the street and highways. Newer Lidar-based speed

measurement also works based on the Doppler Effect discussed in this chapter.

TRANSPORTATION PLANNING AND SUSTAINABLE DEVELOPMENT

As we learn about the ill effects of noise pollution, it becomes a vital part of the environmental

impact assessments and mitigation for transportation projects. It remains a critical equity

concern since, historically, lower-income and minoritized communities bear the brunt of the

impact of traffic-related noise. Traffic noise barriers are one of the key mitigation measures

that manipulate sound waves to reduce their intensity and help minimize their impact. Noise

barriers reduce the sound entering a community by either absorbing/reflecting the sound of

traffic or forcing the waves to take an alternate path over and around the obstacle. The design

of noise barriers is based on the wave propagation principles outlined in this chapter.

Key Takeaways

• The technology used for spot speed studies and speed limit enforcement is based on the Doppler effect

in wave propagation. Spot speed studies are critical to ensure that the roadway design context aligns

with the speed limit posted on the roadway segment.

• The design of noise barriers to protect communities surrounding freeways and railroads from noise

pollution is based on the wave propagation principles discussed in this chapter. It has been an equity

issue since marginalized lower-income communities have historically borne the most impact of

roadway noise pollution.

GLOSSARY

Amplitude: the maximum displacement from the equilibrium position of an object oscillating around

the equilibrium position

Doppler effect: an alteration in the observed frequency of a sound due to motion of either the source

or the observer
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Doppler shift: the actual change in frequency due to relative motion of source and observer

Frequency: number of events per unit of time

Hearing: the perception of sound

Intensity: power per unit area; sounds below 20 Hz

Longitudinal wave: a wave in which the disturbance is parallel to the direction of propagation

Loudness: the perception of sound intensity

Natural frequency: the frequency at which a system would oscillate if there were no driving and no

damping forces

Period: time it takes to complete one oscillation

Pitch: the perception of the frequency of a sound

Sound: a disturbance of matter that is transmitted from its source outward

Sound intensity level: a unitless quantity telling you the level of the sound relative to a fixed standard

Sound pressure level: the ratio of the pressure amplitude to a reference pressure

Tone: number and relative intensity of multiple sound frequencies

Traverse wave: a wave in which the disturbance is perpendicular to the direction of propagation

Wave: a disturbance that moves from its source and carries energy

Wave velocity: the speed at which the disturbance moves. Also called the propagation velocity or

propagation speed

Wavelength: the distance between adjacent identical parts of a wave

MEDIA ATTRIBUTIONS

NOTE: Text by Greg Wolfe, et al.: Access for free at https://openstax.org/books/college-physics-ap-

courses/pages/1-connection-for-ap-r-courses

VIDEOS

• Video 1:“Basic Properties of Waves” by Animations for Physics and Astronomy is licensed

under Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

• Video 2: “Sound Waves and Their Sources (1933) Remastered” by Sterocanvas is licensed

under Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

• Video 3: “Acoustics and Your Environment: The Bais of Sound and Highway Traffic Noise” by

PublicResourceOrg is licensed under Creative Commons Attribution-ShareAlike 3.0 Unported

(CC BY-SA 3.0)

• Video 4: “What is the Doppler Effect?” by Engineering Technology Simulation Learning Videos

is licensed under Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

• Video 5: “Adsorptive Sound Wall Systems” by SoundFighterWalls is licensed under Creative

Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

FIGURES

• Figure 1: “Chapter 16: Oscillatory Motion and Waves” by Greg Wolfe, Erika Gasper, John
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Stoke, Julie Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina

Lyublinskaya, and Douglas Ingram is licensed under Creative Commons Attribution 4.0

International (CC BY 4.0)

• Figure 2: “Chapter 16: Oscillatory Motion and Waves” by Greg Wolfe, Erika Gasper, John

Stoke, Julie Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina

Lyublinskaya, and Douglas Ingram is licensed under Creative Commons Attribution 4.0

International (CC BY 4.0)

• Figure 3: “Chapter 16: Oscillatory Motion and Waves” by Greg Wolfe, Erika Gasper, John

Stoke, Julie Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina

Lyublinskaya, and Douglas Ingram is licensed under Creative Commons Attribution 4.0

International (CC BY 4.0)

• Figure 4: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

• Figure 5: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

• Figure 6: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

• Figure 7: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

• Figure 8: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

• Figure 9: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

• Figure 10: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

• Figure 11: “Chapter 17: Physics of Hearing” by Greg Wolfe, Erika Gasper, John Stoke, Julie

Kretchman, David Anderson, Nathan Czuba, Sudhi Oberoi, Liza Pujji, Irina Lyublinskaya, and

Douglas Ingram is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

TABLES

• Table 1: Garnett, A. (2022, April 26). Traffic noise overview.Center for Environmental

Excellence | AASHTO. Retrieved July 1, 2022, from https://environment.transportation.org/

education/environmental-topics/traffic-noise/traffic-noise-overview/
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SIMULATIONS

• Simulation 1: “Wave on a String” by PhET Simulations is licensed under Creative

Commons Attribution 4.0 International (CC BY 4.0)

• Simulation 2: “Wave Interference” by PhET Simulations is licensed under Creative Commons

Attribution 4.0 International (CC BY 4.0)

REFERENCES

“Traffic Noise and Transportation” by The Center for Environmental Excellence by the American

Association of State Highway and Transportation Officials (AASHTO).

166 MAVS OPEN PRESS



CHAPTER 8: PROBABILITY: BASIC PRINCIPLES AND DISTRIBUTIONS

The transportation system operations and planning are critically dependent on understanding the

basic principles of probability. Several processes are modeled using probability distributions for real-

valued random variables. These distributions include normal distribution for the speed of vehicles on

the road, Poisson’s distribution for gaps in traffic on an uncongested facility, or negative binomial as

a distribution for crash frequency on a roadway segment.

Learning Objectives

• Use basic counting techniques (multiplication rule, combinations, permutations) to estimate

probability and odds.

• Set up and work with distributions for discrete random variables, including Bernoulli, binomial,

geometric, and Poisson distributions.

• Set up and work with distributions for continuous random variables, including uniform, normal and

exponential distributions.

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

USE BASIC COUNTING TECHNIQUES TO ESTIMATE PROBABILITY AND ODDS

This section will explain ways to estimate probability and odds with videos to help your

understanding. Also, short problems to check your understanding are included.

MULTIPLICATION RULE

Multiplication Rule

The multiplication rule says: If there are n ways to perform action 1 and then by m ways

to perform action 2, then there are ways to perform action 1 followed by action 2.
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Count Outcomes Using Tree Diagram

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-1

Check Your Understanding: Multiplication Rule

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-43

PERMUTATIONS

Permutations

A permutation of a set is a particular ordering of its elements. For example, the set

has six permutations: abc, acb, bac, bca, cab, cba. We found the number of

permutations by listing them all. We could have also found the number of permutations

by using the multiplication rule. That is, there are 3 ways to pick the first element, then 2

ways for the second, and 1 for the third. This gives a total of permutations.

In general, the multiplication rule tells us that the number of permutations of a set of

elements is

We also talk about the permutations of k things out of a set of n things.

Example: List all the permutations of 3 elements out of the set
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Note that abc and acb count as distinct permutations. That is, for permutations the order

matters.

There are 24 permutations. Note that the multiplication rule would have told us there are

permutations without bothering to list them all.

Permutation Formula

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-2

Zero Factorial

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-3

Ways to Pick Officers – Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-4

Check Your Understanding: Permutations

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-18
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COMBINATIONS

Combinations

In contrast to permutations, in combinations order does not matter: permutations are

lists and combinations are sets.

Example: List all the combinations of 3 elements out of the set .

Answer: Such a combination is a collection of 3 elements without regard to order. So, abc

and cab both represent the same combination. We can list all the combinations by listing

all the subsets of exactly 3 elements.

There are only 4 combinations. Contrast this with the 24 permutations in the previous

example. The factor of 6 comes because every combination of 3 things can be written in

6 different orders.

Introduction to Combinations

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-5

Combination Formula

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-6

Combination Example: 9 Card Hands

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-7

Check Your Understanding: Combinations

OERTRANSPORT: FUNDAMENTALS OF MATH, PHYSICS, AND STATISTICS FOR FUTURE TRANSPORTATION PROFESSIONALS 171



An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-19

PERMUTATIONS AND COMBINATIONS COMPARISON

We will use the following notations.

= number of permutations (list) of k distinct elements from a set of size n

= number of combinations (subsets) of k elements from a set of size n

We emphasize that by the number of combinations of k elements we mean the number of

subsets of size k.

These have the following notation and formulas:

Permutations:

Combinations:

The notation is read “n choose k”. The formula for follows from the multiplication

rule. It also implies the formula for because a subset of size k can be ordered in k! ways.

We can illustrate the relationship between permutations and combinations by lining up the

results of the previous two examples.

Permutations:

Table 2

abc acb bac bca cab cba

abd adb bad bda dab dba

acd adc cad cda dac dca

bcd bdc cbd cdb bdc dcb

Combinations:
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Notice that each row in the permutations list consists of all 3! permutations of the

corresponding set in the combinations list.

Check Your Understanding: Permutations and Combinations Comparison

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-20

PROBABILITY USING THE RULES

The General Multiplication Rule

When we calculate probabilities involving one event AND another event occurring, we

multiply their probabilities.

In some cases, the first event happening impacts the probability of the second event. We

call these dependent events.

In other cases, the first event happening does not impact the probability of the seconds.

We call these independent events.

Independent events: Flipping a coin twice

What is the probability of flipping a fair coin and getting “heads” twice in a row? That is,

what is the probability of getting heads on the first flip AND heads on the second flip?

Imagine we had 100 people simulate this and flip a coin twice. On average, 50 people

would get heads on the first flip, and then 25 of them would get heads again. So, 25 out of

the original 100 people – or 1/4 of them – would get heads twice in a row.

The number of people we start with does not really matter. Theoretically, 1/2 of the

original group will get heads, and 1/2 of that group will get heads again. To find a fraction

of a fraction, we multiply.

We can represent this concept with a tree diagram like the one shown below in Figure 1.
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Figure 1

We multiply the probabilities along the branches to find the overall probability of one

event AND the next event occurring.

For example, the probability of getting two “tails” in a row would be:

When two events are independent, we can say that

Be careful! This formula only applies to independent events.

Dependent events: Drawing cards

We can use a similar strategy even when we are dealing with dependent events.

Consider drawing two cards, without replacement, from a standard deck of 52 cards.

That means we are drawing the first card, leaving it out, and then drawing the second

card.

What is the probability that both cards selected are black?

Half of the 52 cards are black, so the probability that the first card is black is 26/52. But

the probability of getting a black card changes on the next draw, since the number of

black cards and the total number of cards have both been decreased by 1.

Here is what the probabilities would look like in a tree diagram:
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Figure 2

So, the probability that both cards are black is:

The General Multiplication Rule

For any two events, we can say that

The vertical bar in means “given,” so this could also be read as “the probability

that B occurs given that A has occurred.”

This formula says that we can multiply the probabilities of two events, but we need to take

the first event into account when considering the probability of the second event.

If the events are independent, one happening does not impact the probability of the other,

and in that case, .

Check Your Understanding: Probability Using the Rules
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-21

Probability Using Combinations

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-8

Probability and Combinations

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-9

Conditional Probability and Bayes’ Theorem

Conditional Probability

Conditional probability answers the questions ‘how does the probability of an

event change if we have extra information.’

Example: Toss a fair coin 3 times.

What is the probability of 3 heads?

Answer: Sample space =

. All outcomes are

equally likely, so

Suppose we are told that the first toss was heads. Given this information how

should we compute the probability of 3 heads?

Answer: We have a new (reduced) sample space =

. All outcomes are equally likely, so
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This is called conditional probability, since it takes into account additional

conditions. To develop the notation, we rephrase (b) in terms of events.

Rephrased (b): Let A be the event ‘all three tosses are heads’ = . Let B be

the event ‘the first toss is heads’ = .

The conditional probability of A knowing that B occurred is written

This is read as ‘the conditional probability of A given B ’ OR ‘the probability of A

conditioned on B ’ OR simply ‘the probability of A given B.’

We can visualize conditional probability as follows. Think of as the

proportion of the area of the whole sample space taken up by A. For we

restrict our attention to B. That is, is the proportion of area of B taken

up by A, i.e., .

Figure 3

The formal definition of conditional probability catches the gist of the above

example and visualization.

Formal definition of conditional probability

Let A and B be events. We define the conditional probability of A given B as

Let us redo the coin-tossing example using the definition in the equation above.

Recall A = 3 heads and B = first toss is heads. We have and

. Since , we also have . Now

according to the equation, which agrees with the answer in

Example B.

Bayes’ Theorem

Bayes’ theorem is a pillar of both probability and statistics. For two events A and

B Bayes’ theorem says
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Bayes’ rule tells us how to ‘invert’ conditional probabilities, i.e., to find

from .

Proof of Bayes’ Theorem

The key point is that is symmetric in A and B. So, the multiplication rule

says .

Now divide through by P (A) to get Bayes’ rule.

A common mistake is to confuse and . They can be very

different. This is illustrated in the next example.

Example: Toss a coin 5 times. Let and let

. Then but

.

For practice, let us use Bayes’ theorem to compute using

. The terms are , ,

. So,

Which agrees with our previous calculation.

Conditional Probability and Combinations

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-10

Check Your Understanding: Conditional Probability and Bayes’ Theorem

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-22
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SET UP AND WORK WITH DISTRIBUTIONS FOR DISCRETE RANDOM VARIABLES

The following sections will help you become familiar with distributions for discrete and continuous

random variables. The videos help explain random, discrete, and continuous variables. Probabilities

are also explained through watching the videos in this section. Also, short problems to check your

understanding are included.

RANDOM VARIABLES

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-11

Discrete and Continuous Random Variables

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-12

INTRODUCTION TO DISCRETE RANDOM VARIABLES

A student takes a ten-question, true-false quiz. Because the student had such a busy schedule,

he or she could not study and guesses randomly at each answer. What is the probability of the

student passing the test with at least a 70?

Small companies might be interested in the number of long-distance phone calls their

employees make during the peak time of the day. Suppose the historical average is 20 calls. What

is the probability that the employees make more than 20 long-distance phone calls during the

peak time?

These two examples illustrate two different types of probability problems involving discrete

random variables. Recall that discrete data are data that you can count, that is, the random

variable can only take on whole number values. A random variable describes the outcomes of

a statistical experiment in words. The values of a random variable can vary with each repetition

of an experiment, often called a trial.

Random Variable Notation

The upper-case letter X denotes a random variable. Lowercase letters like x or y denote the

value of a random variable. If X is a random variable, then X is written in words, and x is

given as a number.
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For example, let X = the number of heads you get when you toss three fair coins. The sample

space for the toss of three fair coins is TTT; THH; HTH; HHT; HTT; THT; TTH; HHH. Then,

x = 0, 1, 2, 3. X is in words and x is a number. Notice that for this example, the x values are

countable outcomes. Because you can count the possible values as whole numbers that X can

take on and the outcomes are random (the x values 0, 1, 2, 3), X is a discrete random variable.

Probability Density Functions (PDF) for a Random Variable

A probability density function or probability distribution function has two characteristics:

1. Each probability is between zero and one, inclusive.

2. The sum of the probabilities is one.

A probability density function is a mathematical formula that calculates probabilities for

specific types of events. There is a sort of magic to a probability density function (Pdf) partially

because the same formula often describes very different types of events. For example, the

binomial Pdf will calculate probabilities for flipping coins, yes/no questions on an exam,

opinions of voters in an up or down opinion poll, and indeed any binary event. Other

probability density functions will provide probabilities for the time until a part will fail, when

a customer will arrive at the turnpike booth, the number of telephone calls arriving at a central

switchboard, the growth rate of a bacterium, and on and on. There are whole families of

probability density functions that are used in a wide variety of applications, including medicine,

business and finance, physics, and engineering, among others.

Counting Formulas and the Combinational Formula

To repeat, the probability of event A, P(A), is simply the number of ways the experiment will

result in A, relative to the total number of possible outcomes of the experiment.

As an equation this is:

When we looked at the sample space for flipping 3 coins, we could easily write the full sample

space and thus could easily count the number of events that met our desired result, e.g., x = 1,

where X is the random variable defined as the number of heads.

As we have larger numbers of items in the sample space, such as a full deck of 52 cards, the

ability to write out the sample space becomes impossible.

We see that probabilities are nothing more than counting the events in each group we are

interested in and dividing by the number of elements in the universe, or sample space. This is

easy enough if we are counting sophomores in a Stat class, but in more complicated cases listing

all the possible outcomes may take a lifetime. There are, for example, 36 possible outcomes

from throwing just two six-sided dice where the random variable is the sum of the number of

spots on the up-facing sides. If there were four dice, then the total number of possible outcomes

would become 1,296. There are more than 2.5 MILLION possible 5-card poker hands in a
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standard deck of 52 cards. Obviously keeping track of all these possibilities and counting them

to get at a single probability would be tedious at best.

An alternative to listing the complete sample space and counting the number of elements we

are interested in is to skip the step of listing the sample space, and simply figure out the number

of elements in it and do the appropriate division. If we are after a probability, we really do

not need to see each and every element in the sample space, we only need to know how many

elements are there. Counting formulas were invented to do just this. They tell us the number

of unordered subsets of a certain size that can be created from a set of unique elements. By

unordered it is meant that, for example, when dealing cards, it does not matter if you got {ace,

ace, ace, ace, king} or {king, ace, ace, ace, ace} or {ace, king, ace, ace, ace} and so on. Each of these

subsets are the same because they each have 4 aces and one king.

Combinational Formula (Review)

It is also sometimes referred to as the Binomial Coefficient.

Let us find the hard way the total number of combinations of the four aces in a deck of cards if

we were going to take them two at a time. The sample space would be:

S={(Spade,

Heart),(Spade,Diamond),(Spade,Club),(Diamond,Club),(Heart,Diamond),(Heart,Club)}

There are 6 combinations; formally, six unique unordered subsets of size 2 that can be created

from 4 unique elements. To use the combinatorial formula, we would solve the formula as

follows:

If we wanted to know the number of unique 5-card poker hands that could be created from a

52-card deck, we simply compute:

where 52 is the total number of unique elements from which we are drawing and 5 is the size

group we are putting them into.

With the combinatorial formula we can count the number of elements in a sample space

without having to write each one of them down, truly a lifetime’s work for just the number of 5

card hands from a deck of 52 cards.

Remember, a probability density function computes probability for us. We simply put the
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appropriate numbers in the formula, and we get the probability of specific events. However, for

these formulas to work they must be applied only to cases for which they were designed.

Constructing a Probability Distribution for Random Variable

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-13

Probability with Discrete Random Variable Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-14

Check Your Understanding: Random Variables

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-23

Mean (expected value) of a Discrete Random Variable

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-15

Expected Value

Example: Suppose we have a six-sided die marked with five 3’s and one 6. What

would you expect the average of 6000 rolls to be?

Answer: If we knew the value of each roll, we could compute the average by
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summing the 6000 values and dividing by 6000. Without knowing the values, we

can compute the expected average as follows.

Since there are five 3’s and one 6, we expect roughly 5/6 of the rolls will give 3

and 1/6 will give 6. Assuming this to be exactly true, we have the following table of

values and counts (Table 3):

Table 3

Value: 3 6

Expected
counts:

5000 1000

The average of these 6000 values is then

We consider this the expected average in the sense that we “expect” each of the

possible values to occur with the given frequencies.

Definition: Suppose X is a discrete random variable that takes values

with probabilities . The expected

value of X is denoted E(X) and defined by

Notes:

The expected value is also called the mean or average of X and is often denoted by

(“mu”).

As seen in the above example, the expected value need not be a possible value of the

random variable. Rather it is a weighted average of the possible values.

Expected value is a summary statistic, providing a measure of the location or

central tendency of a random variable.

If all the values are equally probable, then the expected value is just the usual

average of the values.

Probability Mass Function and Cumulative Distribution Function

It gets tiring and hard to read and write for the probability that .

When we know we are talking about X we will simply write p(a). If we want to make

X explicit we will write .

Definition: The probability mass function (pmf) of a discrete random variable is

the function .

Note:
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1. We always have .

2. We allow a to be any number. If a is a value that X never
takes, then .

Mean and Center of Mass

You may have wondered why we use the name “probability mass function.” Here

is the reason: if we place an object of mass at position for each j,

then E(X) is the position of the center of mass. Let us recall the latter notion via an

example.

Example: Suppose we have two masses along the x-axis, mass at

position and mass at position . Where is the center of

mass?

Answer: Intuitively we know that the center of mass is closer to the larger mass.

Figure 4

From physics, we know the center of mass is

We call this formula a “weighted” average of the and . Here is weighted

more heavily because it has more mass.

Now look at the definition of expected value E(X). It is a weighted average of the

values of X with the weights being probabilities rather than masses! We

might say that “The expected value is the point at which the distribution would

balance.” Note the similarity between the physics example and the previous dice

example.

Check Your Understanding: Mean of a Discrete Random Variable

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-24
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Variance and Standard Deviation for Discrete Random Variables

The expected value (mean) of a random variable is a measure of location or central

tendency. If you had to summarize a random variable with a single number, the mean

would be a desirable choice. Still, the mean leaves out a good deal of information. For

example, the random variables X and Y below both have mean 0, but their probability

mass is spread out about the mean quite differently.

It is probably a little easier to see the different spreads in plots of the probability mass

functions. We use bars instead of dots to give a better sense of the mass.

Figure 5

Variance and Standard Deviation

Taking the mean as the center of a random variable’s probability distribution, the

variance is a measure of how much the probability mass is spread out around this center.

Definition: If X is a random variable with mean , then the variance of X is

defined by

The standard deviation of X is defined by

If the relevant random variable is clear from context, then the variance and standard

deviation are often denoted by and (“sigma”), just as the mean is (“mu”).

What does this mean? First, let us rewrite the definition explicitly as a sum. If X takes

values with probability mass function, then

.

In words, the formula for Var(X) says to take a weighted average of the squared distance to

the mean. By squaring, we make sure we are averaging only non-negative values, so that

the spread to the right of the mean will not cancel that to the left.
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Note on units:

1. has the same units as

2. Var(X) has the same units as the square of X. So, if X is in meters, then Var(X) is in

meters squared.

Because and X have the same units, the standard deviation is a natural measure of

spread.

Variance and Standard Deviation of a Discrete Random Variable

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-16

Check Your Understanding: Variance and Standard Deviation for Discrete Random
Variables

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-25

BERNOULLI

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-17

Bernoulli Distributions

Model: The Bernoulli distribution models one trial in an experiment that can result in

either a success or failure. This is the most important distribution and is also the simplest.

A random variable X has a Bernoulli distribution with parameter p if:

1. X takes the values 0 and 1.
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2. and

We will write X ~ Bernoulli (p) or Ber (p), which is read “X follows a Bernoulli distribution

with parameter ” or “ is drawn from a Bernoulli distribution with parameter p.”

A simple model for the Bernoulli distribution is to flip a coin with probability p of heads,

with X = 1 on heads and X = 0 on tails. The general terminology is to say X is 1 on success

and 0 on failure, with success and failure defined by the context.

Many decisions can be modeled as a binary choice, such as votes for or against a proposal.

If p is the proportion of the voting population that favors the proposal, then the vote of a

random individual is modeled by a Bernoulli (p).

Here are the table and graphs of the pmf for the Bernoulli (1/2) distribution and below

that for the general Bernoulli (p) distribution.

Figure 6: pmf for the Bernoulli(1/2) distribution

Figure 7: pmf for the Bernoulli(p) distribution

Mean and Variance of Bernoulli Distribution

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-18

Bernoulli Distribution Mean and Variance
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One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-19

The Variance of a Bernoulli Random Variable

Bernoulli random variables are fundamental, so we should know their variance.

If X~Bernoulli(p) then0

Proof: We know that E(X) = p. We compute Var(X) using a table (Table 4).

Table 4

values X 0 1

pmf p(x) 1 – p p

(X – )2
(0 – p)2 (1 – p)2

BINOMIAL DISTRIBUTIONS

Binomial Variables

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-20

Check Your Understanding: Binomial Variables

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-26
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Binomial Distribution

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-21

Visualizing a Binomial Distribution

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-22

Binomial Distributions

The binomial distribution Binomial (n,p), or Bin (n,p), models the number of successes in

n independent Bernoulli(p) trials.

There is a hierarchy here. A single Bernoulli trial is, say, a toss of a coin. A single binomial

trial consists of n Bernoulli trials. For coin flips the sample space for a Bernoulli trial is

. The sample space for a binomial trial is all sequences of heads and tails of length

n. Likewise, a Bernoulli random variable takes values 0 and 1 and a binomial random

variable takes values 0, 1, 2, …, n.

Example: The number of heads in n flips of a coin with probability p of heads follows a

Binomial(n,p) distribution.

We describe X~Binomial(n,p) by giving its values and probabilities. For notation we will

use k to mean an arbitrary number between 0 and n.

We remind you that ‘n choose k’ is the number of ways to choose

k things out of a collection of n things and it has the formula

(It is also called a binomial coefficient). Table 5 is a table for the pmf of a Binomial(n,k)

random variable:
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Table 5

values a: 0 1 2 . . . k . . . n

pmf p(a): . . . . . . pn

Example: What is the probability of 3 or more heads in 5 tosses of a fair coin?

Answer: The binomial coefficients associated with n = 5 are

,

And similarly

Using these values, we get Table 6 for X~Binomial(5,p).

Table 6

values a: 0 1 2 3 4 5

pmf p(a): p5

We were told p = 1/2 so

Binomial Probability Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-23

Explanation of the Binomial Probabilities

For concreteness, let n = 5 and k = 2 (the argument for arbitrary n and k is identical).

So X~Binomial(5,p) and we want to compute p(2). The long way to compute p(2)

is to list all the ways to get exactly 2 heads in 5-coin flips and add up their

probabilities. The list has 10 entries: HHTTT, HTHTT, HTTHT, HTTTH, THHTT,

THTHT, THTTH, TTHHT, TTHTH, TTTHH.

Each entry has the same probability of occurring, namely

This is because each of the two heads has probability p and each of the 3 tails has
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probability 1 – p. Because the individual tosses are independent, we can multiply

probabilities. Therefore, the total probability of exactly 2 heads is the sum of 10

identical probabilities, i.e., , as shown in Table 6.

This guides us to the shorter way to do the computation. We have to count the

number of sequences with exactly 2 heads. To do this we need to choose 2 of the

tosses to be heads and the remaining 3 to be tails. The number of such sequences is

the number of ways to choose 2 out of the 5 things, which is . Since each such

sequence has the same probability, , we get the probability of exactly 2

heads .

Here are some binomial probability mass functions (here, frequency is the same as

probability).

Figure 8

Check Your Understanding: Binomial Probability

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-27

Characteristics of a Binomial Experiment

1. There are a fixed number of trials. Think of trials as repetitions of an
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experiment. The letter n denotes the number of trials.

2. The random variable, x, number of successes, is discrete.

3. There are only two possible outcomes, called “success” and “failure,” for each

trial. The letter p denotes the probability of a success on any one trial, and q

denotes the probability of a failure on any one trial. p + q = 1

4. The n trials are independent and are repeated using identical conditions. Think

of this as drawing WITH replacement. Because the n trials are independent, the

outcome of one trial does not help in predicting the outcome of another trial.

Another way of saying this is that for each individual trial, the probability, p, of a

success and probability, q, of a failure remain the same. For example, randomly

guessing at a true-false statistics question has only two outcomes. If a success is

guessing correctly, then a failure is guessing incorrectly. Suppose Jow always

guesses correctly on any statistics true-false question with a probability

. Then, . This means that for every true-false statistics question Joe

answers, his probability of success ( ) and his probability of failure (

) remain the same.

Any experiment that has characteristics three and four and where n = 1 is called the

Bernoulli Trial.

A word about independence

So far, we have been using the notion of an independent random variable without ever

carefully defining it. For example, a binomial distribution is the sum of independent

Bernoulli trials. This may (should?) have bothered you. Of course, we have an intuitive

sense of what independence means for experimental trials. We also have the probabilistic

sense that random variables X and Y are independent if knowing the value of X gives you

no information about the value of Y.

Definition: The discrete random variables X and Y are independent if

For any values a,b. That is, the probabilities multiply.

Expected Value of a Binomial Variable

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-24
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Variance of a Binomial Variable

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-25

Finding the Mean and Standard Deviation of a Binomial Random Variable

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-26

Variance of Binomial (n,p)

Suppose X~Binomial(n,p). Since X is the sum of independent Bernoulli(p) variables and each

Bernoulli variable has variance we have

Check Your Understanding: Expected Value of a Binomial Variable

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-28

GEOMETRIC DISTRIBUTIONS

Geometric Random Variables Introduction

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-27
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Check Your Understanding: Binomial vs. Geometric Random Variables

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-29

Geometric Distributions

A geometric distribution models the number of tails before the first head in a sequence

of coin flips (Bernoulli trials).

Example: (a) Flip a coin repeatedly. Let X be the number of tails before the first heads.

So, X can equal 0, i.e., the first flip is heads, 1, 2, …. In principle, it takes any nonnegative

integer value.

(b) Give a flip of tails the value 0 and heads the value 1. In this case, X is the number of 0’s

before the first 1.

(c) Give a flip of tails the value 1 and heads the value 0. In this case, X is the number of 1’s

before the first 0.

(d) Call a flip of tails a success and heads a failure. So, X is the number of successes before

the first failure.

(e) Call a flip of tails a failure and heads a success. So, X is the number of failures before

the first success.

You can see this models many different scenarios of this type. The most neutral language

is the number of tails before the first head.

Formal definition: The random variable X follows a geometric distribution with

parameter p if

• X takes the values 0, 1, 2, 3, …

• Its pmf is given by

We denote this by . In Table 7 we have:
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Table 7: X

value a: 0 1 2 3 . . . k . . .

pmf p(a): p . . . . . .

The geometric distribution is an example of a discrete distribution that takes an infinite

number of possible values. Things can get confusing when we work with successes and

failures since we might want to model the number of successes before the first failure, or

we might want the number of failures before the first success. To keep things straight you

can translate to the neutral language of the number of tails before the first heads.

Figure 9: Pmf for the geometric(1/3) distribution

Probability for a Geometric Random Variable

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-28

Characteristics of a Geometric Experiment

The geometric probability density function builds upon what we have learned from

the binomial distribution. In this case, the experiment continues until either a

success or a failure occurs rather than for a set number of trials. Here are the main

characteristics of a geometric experiment:

1. There are one or more Bernoulli trials with all failures except the last one,

which is a success. In other words, you keep repeating what you are doing

until the first success. Then you stop. For example, you throw a dart at a

bullseye until you hit the bullseye. The first time you hit the bullseye is a

“success,” so you stop throwing the dart. It might take six tries until you

hit the bullseye. You can think of the trials as failure, failure, failure,

failure, failure, success, STOP.
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2. In theory, the number of trials could go on forever.

3. The probability, p, of a success and the probability, q, of a failure is the

same for each trial. p + q = 1 and . For example, the probability

of rolling a three when you throw one fair die is . This is true no matter

how many times you roll the die. Suppose you want to know the

probability of getting the first three on the fifth roll. On rolls one through

four, you do not get a face with a three. The probability for each of the

rolls is , the probability of a failure. The probability of getting a

three on the fifth roll is

4. X = the number of independent trials until the first success.

Check Your Understanding: Probability for a Geometric Random Variable

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-30

Cumulative Geometric Probability (greater than a value)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-29

Cumulative Geometric Probability (less than a value)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-30

Check Your Understanding: Cumulative Geometric Probability
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-31

POISSON DISTRIBUTIONS

Poisson Process 1

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-31

Poisson Process 2

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-32

Poisson Distribution

Another useful probability distribution is the Poisson distribution or waiting time

distribution. This distribution is used to determine how many checkout clerks are needed

to keep the waiting time in line to specified levels, how many telephone lines are needed

to keep the system from overloading, and many other practical applications. The

distribution gets its name from Simeon Poisson who presented it in 1837 as an extension

of the binomial distribution.

Here are the main characteristics of a Poisson experiment:

1. The Poisson probability distribution gives the probability of a number of events

occurring in a fixed interval of time or space if these events happen with a

known average rate.

2. The events are independent of the time since the last event. For example, a book

editor might be interested in the number of words spelled incorrectly in a

particular book. It might be that, on the average, there are five words spelled

incorrectly in 100 pages. The interval is the 100 pages, and it is assumed that
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there is no relationship between when misspellings occur.

3. The random variable X = the number of occurrences in the interval of interest.

Example: You notice that a news reporter says “uh,” on average, two times per broadcast.

What is the probability that the news reporter says “uh” more than two times per

broadcast?

This is a Poisson problem because you are interested in knowing the number of times the

news reporter says “uh” during a broadcast.

(a) What is the interval of interest?

a. one broadcast measured in minutes

(b) What is the average number of times the news reporter says “uh” during one broadcast?

a. 2

(c) Let X = ____. What values does X take on?

a. Let X = the number of times the news reporter says “uh” during one broadcast.

d. The probability question is P(__).

a.

Notation for the Poisson: P = Poisson Probability Distribution Function

Read this as “X is a random variable with a Poisson distribution.” The parameter is

the mean for the interval of interest. The mean is the number of

occurrences that occur on average during the interval period.

The formula for computing probabilities that are from a Poisson process is:

where P(X) is the probability of X successes, is the expected number of successes based

upon historical data, e is the natural logarithm approximately equal to 2.718, and X is the

number of successes per unit, usually per unit of time.

In order to use the Poisson distribution, certain assumptions must hold. These are: the

probability of a success, , is unchanged within the interval, there cannot be simultaneous
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successes within the interval, and finally, that the probability of a success among intervals

is independent, the same assumption of the binomial distribution.

In a way, the Poisson distribution can be thought of as a clever way to convert a

continuous random variable, usually time, into a discrete random variable by breaking up

time into discrete independent intervals. This way of thinking about the Poisson helps us

understand why it can be used to estimate the probability for the discrete random variable

from the binomial distribution. The Poisson is asking for the probability of a number of

successes during a period of time while the binomial is asking for the probability of a

certain number of successes for a given number of trials.

Example: Leah’s answering machine receives about six telephone calls between 8 a.m.

and 10 a.m. What is the probability that Leah receives more than one call in the next 15

minutes?

Let X = the number of calls Leah receives in 15 minutes (the interval of interest is 15

minutes or hour)

If Leah receives, on average, six telephone calls in two hours, and there are eight 15

minutes intervals in two hours, then Leah receives calls in 15 minutes, on

average. So, for this problem.

Probability that Leah receives more than one telephone call in the next 15 minutes is

about 0.1734.

The graph of is:

Figure 10

The y-axis contains the probability of x where X = the number of calls in 15 minutes.
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Poisson Probability Distribution – Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-33

Check Your Understanding: Poisson Distributions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-32

TABLES OF DISTRIBUTIONS AND PROPERTIES

Table 8

Distribution Range pmf Mean Variance

Bernoulli(p) 0,1 p

Binomial(n,p) 0, 1, …
, n np

Geometric(p) 0, 1, 2,
…

Let X be a discrete random variable with range

Table 9

Expected Value: Variance:

Synonyms: mean, average

Notation:

Definition:

SET UP AND WORK WITH DISTRIBUTIONS FOR CONTINUOUS RANDOM VARIABLES

This section will explain how to work with distributions for continuous random variables. It will

start with some definition and a calculus warm-up to help prepare you. The videos help explain the

concepts while there are problems after each short section to help check your understanding.
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CONTINUOUS RANDOM VARIABLES

We now turn to continuous random variables. All random variables assign a number to each

outcome in a sample space. Whereas discrete random variables take on a discrete set of possible

values, continuous random variables have a continuous set of values.

Computationally, to go from discrete to continuous we simply replace sums by integrals. It will

help you to keep in mind that (informally) an integral is just a continuous sum.

Calculus Warmup

Conceptually, you should be comfortable with two views of a definite integral.

1.

2.

The connection between the two is seen below in Figure 11:

Figure 11

As the width of the intervals gets smaller the approximation becomes better.

Figure 12

Note: In calculus, you learned to compute integrals by finding antiderivatives. This is

important for calculations, but do not confuse this method for the reason we use

integrals. Our interest in integrals comes primarily from its interpretation as a “sum” and

to a much lesser extent its interpretation as area.

Probability Density Functions

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-34
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Continuous Random Variables and Probability Density Functions

A continuous random variable takes a range of values, which may be finite in extent. Here

are a few examples of ranges:

Definition: A random variable X is continuous if there is a function f (x) such that for any

we have

The function f (x) is called the probability density function (pdf).

The pdf always satisfies the following properties:

1. (f is nonnegative).

2. (This is equivalent to:

The probability density function f (x) of a continuous random variable is the analogue of

the probability mass function p (x) of a discrete random variable. Here are two significant

differences:

1. Unlike p (x), the pdf f (x) is not a probability. You have to integrate it to get

probability.

2. Since f (x) is not a probability, there is no restriction that f (x) be less than or

equal to 1.

Note: In property 2, we integrated over since we did not know the range of

values taken by X. Formally, this makes sense because we just define f (x) to be 0 outside

of the range of X. In practice, we would integrate between bounds given by the range of

X.

The Terms “Probability Mass” and “Probability Density”

Why do we use the terms mass and density to describe the pmf and pdf? What is the

difference between the two? The simple answer is that these terms are completely

analogous to the mass and density you saw in physics and calculus. We will review this

first for the probability mass function and then discuss the probability density function.

in extent.

Mass as a sum:

If masses and are set in a row at positions ,

then the total mass is

Figure 13
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We can define a ‘mass function’ p (x) with for and

otherwise. In this notation the total mass is

The probability mass function behaves in exactly the same way, except it has the

dimension of probability instead of mass.

Mass as an integral of density:

Suppose you have a rod of length L meters with varying density f (x) kg/m. (Note the units

are mass/length).

Figure 14

If the density varies continuously, we must find the total mass of the rod by integration:

total mass = .

This formula comes from dividing the rod into small pieces and ‘summing’ up the mass of

each piece. That is:

In the limit as goes to zero the sum becomes the integral.

The probability density function behaves exactly the same way, except it has units

of probability/ (unit x) instead of kg/m. Indeed, the equation

is exactly analogous to the above integral for total mass.

While we are on a physics kick, note that for both discrete and continuous random

variables, the expected value is simply the center of mass or balance point.

Properties of Continuous Probability Density Functions

The graph of a continuous probability distribution is a curve. Probability is represented

by area under the curve. The curve is called the probability density function (pdf). We

use the symbol f (x) to represent the curve. f (x) is the function that corresponds to the

graph; we use the density function f (x) to draw the graph of the probability distribution.

Area under the curve is given by a different function called the cumulative distribution

function (cdf). The cumulative distribution function is used to evaluate probability as

area. Mathematically, the cumulative probability density function is the integral of the

pdf, and the probability between two values of a continuous random variable will be the

integral of the pdf between these two values: the area under the curve between these

values. Remember that the area under the pdf for all possible values of the random
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variable is one, certainty. Probability thus can be seen as the relative percent of certainty

between the two values of interest.

• The outcomes are measured, not counted.

• The entire area under the curve and above the x-axis is equal to one.

• Probability is found for intervals of x values rather than for individual x values.

• is the probability that the random variable X is in the interval between the

values c and d. is the area under the curve, above the x-axis, to the right of

c and the left of d.

• The probability that x takes on any single individual value is zero. The area

below the curve, above the x-axis, and between x = c and x = c has no width, and therefore no

area (area= 0). Since the probability is equal to the area, the probability is also zero.

• is the same as because probability is equal to area.

We will find the area that represents probability by using geometry, formulas, technology,

or probability tables. In general, integral calculus is needed to find the area under the

curve for many probability density functions.

There are many continuous probability distributions. When using a continuous

probability distribution to model probability, the distribution used is selected to model

and fit the particular situation in the best way.

In this section, we will study the uniform distribution, the exponential distribution, and

the normal distribution. The following graphs illustrate these distributions.

Figure 15
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Figure 16

Figure 17

Cumulative Distribution Function

The cumulative distribution function (cdf) of a continuous random variable X is defined

in exactly the same way as the cdf of a discrete random variable.

Note well that the definition is about probability. When using the cdf you should first

think of it as a probability. Then when you go to calculate it, you can use

Notes:

1. For discrete random variables, there was not much occasion to use the

cumulative distribution function. The cdf plays a far more prominent role for

continuous random variables.
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2. As before, we started the integral at because we did not know the precise

range of X. Formally, this still makes sense since outside the range of

X. In practice, we will know the range and start the integral at the start of the

range.

3. In practice, we often say “X has distribution F (x)” rather than “X has cumulative

distribution function F (x).”

Check Your Understanding: Continuous Random Variables

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-33

UNIFORM DISTRIBUTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-35

The Uniform Distribution

The uniform distribution is a continuous probability distribution and is concerned with

events that are equally likely to occur. When working out problems that have a uniform

distribution, be careful to not if the data is inclusive or exclusive of endpoints.

The mathematical statement of the uniform distribution is

Where a = the lowest value of x and b = the highest value of x.

Formulas for the theoretical mean and standard deviation are

Uniform Distribution Properties

1. Parameters: a, b
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2. Range: [a, b]

3. Notation: uniform

4. Density:

5. Distribution:

6. Models: All outcomes in the range have equal probability (more precisely all

outcomes have the same probability density).

Graphs:

Figure 18

Examples:

1. Suppose we have a tape measure with markings at each millimeter. If we

measure (to the nearest marking) the length of items that are roughly a meter

long, the rounding error will uniformly distributed between

2. Many boardgames use spinning arrows (spinners) to introduce randomness.

When spun, the arrow stops at an angle that is uniformly distributed between 0

and radians.

3. In most pseudo-random number generators, the basic generator simulates a

uniform distribution, and all other distributions are constructed by

transforming the basic generator.

Check Your Understanding: Uniform Distributions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-34
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EXPONENTIAL DISTRIBUTIONS

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-36

The Exponential Distribution

The exponential distribution is often concerned with the amount of time until some

specific occurs. For example, the amount of time (beginning now) until an earthquake

occurs has an exponential distribution. Other examples include the length of time, in

minutes, of long-distance business telephone calls, and the amount of time, in months, a

car battery lasts. It can be shown, too, that the value of the change that you have in your

pocket or purse approximately follows an exponential distribution.

Values for an exponential random variable occur in the following way. There are fewer

large values and more small values. For example, marketing studies have shown that the

amount of money customers spend in one trip to the supermarket follows an exponential

distribution. There are more people who spend small amounts of money and fewer

people who spend large amounts of money.

Exponential distributions are commonly used in calculations of product reliability, or

length of time a produce lasts.

The random variable for the exponential distribution is continuous and often measures a

passage of time, although it can be used in other applications. Typical questions may be,

“what is the probability that some event will occur within the next x hours or days, or

what is the probability that some event will occur between hours, or

what is the probability that the event will take more than hours to perform?” In short,

the random variable X equals (a) the time between events or (b) the passage of time to

complete an action, e.g., wait on a customer. The probability density function is given by:

Where is the historical average waiting time and has a mean and standard deviation of

.

In order to calculate probabilities for specific probability density functions, the

cumulative density function is used. The cumulative density function (cdf) is simply the

integral of the pdf and is:
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Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-37

Check Your Understanding: Exponential Probability Distribution

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-35

Integration by Parts – Exponential Distribution

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-38

Memorylessness of the Exponential Distribution

Say that the amount of time between customers for a postal clerk is exponentially

distributed with a mean of two minutes. Suppose that five minutes have elapsed since

the last customer arrived. Since an unusually long amount of time has now elapsed, it

would seem to be more likely for a customer to arrive within the next minute. With

the exponential distribution, this is not the case – the additional time spend waiting

for the next customer does not depend on how much time has already elapsed since

the last customer. This is referred to as the memoryless property. The exponential and

geometric probability density functions are the only probability functions that have the

memoryless property. Specifically, the memoryless property says that

For example, if five minutes have elapsed since the last customer arrives, then the

probability that more than one minute will elapse before the next customer arrives is

computed by using in the foregoing equation.
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This is the same probability as tat of waiting more than one minute for a customer to

arrive after the previous arrival.

Check Your Understanding: Memorylessness of the Exponential Distribution

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-36

Relationship Between the Poisson and the Exponential Distribution

There is an interesting relationship between the exponential distribution and the Poisson

distribution. Suppose that the time that elapses between two successive events follows the

exponential distribution with a mean of units of time. Also assume that these times are

independent, meaning that the time between events is not affected by the times between

previous events. If these assumptions hold, then the number of events per unit of time

follows a Poisson distribution with mean . Recall that if X has the Poisson distribution

with mean , then

The formula for the exponential distribution: . Where

average time between occurrences.

We see that the exponential is the cousin of the Poisson distribution, and they are linked

through this formula. There are important differences that make each distribution

relevant for different types of probability problems.

First, the Poisson has a discrete random variable, x =, where time; a continuous variable

is artificially broken into discrete pieces. We saw that the number of occurrences of an

event in a given time interval, x, follows the Poisson distribution.

For example, the number of times the telephone rings per hour. By contrast, the time

between occurrences follows the exponential distribution. For example, the telephone

just rang, how long will it be until it rings again? We are measuring length of time of

the interval, a continuous random variable, exponential, not events during an interval,

Poisson.

The Exponential Distribution v. the Poisson Distribution
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A visual way to show both the similarities and differences between these two

distributions is with a timeline.

Figure 19

The random variable for the Poisson distribution is discrete and thus counts events

during a given time period, on Figure 19 above and calculates the probability of

that number occurring. The number of events, four in the graph is measured in counting

numbers; therefore, the random variable of the Poisson is a discrete random variable.

The exponential probability distribution calculates probabilities of the passage of time, a

continuous random variable. In Figure 19, this is shown as the bracket from to the next

occurrence of the event marked with a triangle.

Classic Poisson distribution questions are “how many people will arrive at my checkout

window in the next hour?”

Classic exponential distribution questions are “how long it will be until the next person

arrives,” or a variant, “how long will the person remain here once they have arrived?”

Again, the formula for the exponential distribution is:

We see immediately the similarity between the exponential formula and the Poisson

formula.

Both probability density functions are based upon the relationship between time and

exponential growth or decay. The “e” in the formula is a constant with the approximate

value of 2.71828 and is the base of the natural logarithmic exponential growth formula.

When people say that something has grown exponentially this is what they are talking

about.

An example of the exponential and the Poisson will make clear the differences been the

two. It will also show the interesting applications they have.

Poisson Distribution

Suppose that historically 10 customers arrive at the checkout lines each hour. Remember
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that this is still probability, so we have to be told these historical values. We see this is a

Poisson probability problem.

We can put this information into the Poisson probability density function and get a

general formula that will calculate the probability of any specific number of customers

arriving in the next hour.

The formula is for any value of the random variable we chose, and so the x is put into the

formula. This is the formula:

As an example, the probability of 15 people arriving at the checkout counter in the next

hour would be

Here we have inserted x = 15 and calculated the probability that in the next hour 15

people will arrive is .061.

Exponential Distribution

If we keep the same historical facts that 10 customers arrive each hour, but we now are

interested in the service time a person spends at the counter, then we would use the

exponential distribution. The exponential probability function for any value of x, the

random variable, for this particular checkout counter historical data is:

To calculate , the historical average service time, we simply divide the number of people

that arrive per hour, 10, into the time period, one hour, and have . Historically,

people spend 0.1 of an hour at the checkout counter, or 6 minutes. This explains the .1 in

the formula.

There is a natural confusion with in both the Poisson and exponential formulas. They

have different meanings, although they have the same symbol. The mean of the

exponential is one divided by the mean of the Poisson. If you are given the historical

number of arrivals, you have the mean of the Poisson. If you are given an historical length

of time between events, you have the mean of an exponential.

Continuing with our example at the checkout clerk; if we wanted to know the probability

that a person would spend 9 minutes or less checking out, then we use this formula. First,

we convert to the same time units which are parts of one hour. Nine minutes is 0.15 of

one hour. Next, we note that we are asking for a range of values. This is always the case

for a continuous random variable. We write the probability question as:

212 MAVS OPEN PRESS



We can now put the numbers into the formula, and we have our result

The probability that a customer will spend 9 minutes or less checking out is 0.7769.

We see that we have a high probability of getting out in less than nine minutes and a tiny

probability of having 15 customers arriving in the next hour.

Exponential Distribution Properties

1. Parameter:

2. Range:

3. Notation: exponential

4. Density:

5. Distribution: (easy integral)

6. Right tail distribution:

7. Models: The waiting time for a continuous process to change state.

Examples:

1. If I step out to 77 Mass Ave after class and wait for the next taxi, m waiting time

in minutes is exponentially distributed. We will see that in this case is given by

one over the average number of taxis that pass per minute (on weekday

afternoons).

2. The exponential distribution models the waiting time until an unstable isotope

undergoes nuclear decay. In this case, the value of is related to the half-life of

the isotope.

Graphs:

Figure 20
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THE NORMAL DISTRIBUTION

The normal probability density function, a continuous distribution, is the most important of

all the distributions. It is widely used and even more widely abused. Its graph is bell-shaped.

You see the bell curve in almost all disciplines. Some of these include psychology, business,

economics, the sciences, nursing, and, of course, mathematics. Some of your instructors may

use the normal distribution to help determine your grade. Most IQ scores are normally

distributed. Often real-estate prices fit a normal distribution.

The normal distribution has two parameters (two numerical descriptive measures): the mean

and the standard deviation . If X is a quantity to be measured that has a normal

distribution with mean and standard deviation , we designate this by writing the

following formula of the normal probability density function:

Figure 21

The probability density function is a rather complicated function. Do not memorize it. It is not

necessary.

The curve is symmetric about a vertical line drawn through the mean, The mean is the same

as the median, which is the same as the mode, because the graph is symmetric about As

the notation indicates, the normal distribution depends only on the mean and the standard

deviation. Note that this is unlike several probability density functions we have already studies,

such as the Poisson, where the mean is equal to and the standard deviation simply the square

root of the mean, or the binomial, where p is used to determine both the mean and standard

deviation. Since the area under the curve must equal one, a change in the standard deviation,

, causes a change in the shape of the normal curve; the curve becomes fatter and wider or

skinnier and taller depending on . A change in causes the graph to shift to the left or right.

This means there are an infinite number of normal probability distributions. One of the special

interests is called the standard normal distribution.

214 MAVS OPEN PRESS



The Standard Normal Distribution

The standard normal distribution is a normal distribution of standardized values

called z—scores. A z-score is measure in units of the standard deviation.

The mean for the standard normal distribution is zero, and the standard deviation is one.

What this does is dramatically simplify the mathematical calculation of probabilities. Take

a moment and substitute zero and one in the appropriate places in the above formula and

you can see that the equation collapses into one that can be much more easily solved using

integral calculus. The transformation produces the distribution

. The value x in the given equation comes from a known normal distribution with

known mean and known standard deviation . The z-score tells how many standard

deviations a particular x is away from the mean.

Z-Scores

If X is a normally distributed random variable and , then the z-score for a

particular x is:

The z-score tells you how many standard deviations the value x is above (to the right

of) or below (to the left of) the mean, . Values of x that are larger than the mean have

positive z-scores, and values of x that are smaller than the mean have negative z-scores. If

x equals the mean, then x has a z-score of zero.

Example: Suppose . This says that X is a normally distributed random

variable with mean and standard deviation . Suppose . Then:

This means that is two standard deviations above or to the right of the

mean .

Now suppose x = 1. Then: (rounded to two decimal places).

This means that x = 1 is 0.67 standard deviations below or to the left of the

mean .

The Empirical Rule

If X is a random variable and has a normal distribution with mean and standard

deviation , then the Empirical Rule states the following:
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• About 68% of the x values lie between of the mean (within one

standard deviation of the mean).

• About 95% of the x values lie between (within two

standard deviations of the mean).

• About 99.7% of the x values lie between of the mean (within three

standard deviations of the mean). Notice that almost all the x values lie within three standard

deviations of the mean.

• The z-scores for respectively

• The z-scores for respectively.

• The z-scores for respectively.

Figure 22

Normal Distribution Problems: Empirical Rule

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-39

Check Your Understanding: Normal Distribution Problems
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-37

Normal Distribution Properties

In 1809, Carl Friedrich Gauss published a monograph introducing several notions that

have become fundamental to statistics: the normal distribution, maximum likelihood

estimation, and the method of least squares. For this reason, the normal distribution is

also called the Gaussian distribution, and it is the most important continuous distribution.

1. Parameters:

2. Range:

3. Notation: normal

4. Density:

5. Distribution: has no formula, so use tables or software such as “pnorm” in

R to compute F(x). (Will be discussed later in the module)

6. Models: Measurement error, intelligence/ability, height, averages of lots of data.

Here are some graphs of normal distributions. Note they are shaped like a bell curve. Note

also that as increases as they become more spread out.

Figure 23

Using the Normal Distribution

The shaded area in Figure 24 indicates the area to the right of x. This area is represented

by the probability . Normal tables provide the probability between the mean,

zero for the standard normal distribution, and a specific value such as . This is the

unshaded part of the graph from the mean to .
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Figure 24

Because the normal distribution is symmetrical, if were the same distance to the left of

the mean the area, probability, in the left tail, would be the same as the shaded area in the

right tail. Also, bear in mind that because of the symmetry of this distribution, one-half of

the probability is to the right of the mean and one-half is to the left of the mean.

Calculations of Probabilities

To find the probability for probability density functions with a continuous random

variable we need to calculate the area under the function across the values of X we are

interested in. For the normal distribution this seems a difficult task given the complexity

of the formula. There is, however, a simple way to get what we want. Here again is the

formula for the normal distribution:

Looking at the formula for the normal distribution it is not clear just how we are going

to solve for the probability doing it the same way we did it with the previous probability

functions. There we put the data into the formula and did the math.

To solve this puzzle, we start knowing that the area under a probability density function

is the probability.
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Figure 25

This shows that the area between is the probability as stated in the formula:

The mathematical tool needed to find the area under a curve is integral calculus. The

integral of the normal probability density function between the two points is

the area under the curve between these two points and is the probability between these

two points.

Doing these integrals is no fun and can be very time consuming. But now, remembering

that there are an infinite number of normal distributions out there, we can consider

the one with a mean of zero and a standard deviation of 1. This particular normal

distribution is given the name Standard Normal Distribution. Putting these values into

the formula it reduces to a very simple equation. We can now quite easily calculate all

probabilities for any value of x, for this particular normal distribution, that has a mean of

zero and a standard deviation of 1. They are presented in numerous ways. The table is the

most common presentation and is set up with probabilities for one-half the distribution

beginning with zero, the mean, and moving outward. The shaded area in the graph at the

top of the table in Statistical Tables represents the probability from zero to the specific Z

value noted on the horizontal axis, Z.

The only problem is that even with this table, it would be a ridiculous coincidence that

our data had a mean of zero and a standard deviation of one. The solution is to convert

the distribution we have with its mean and standard deviation to this new Standard

Normal Distribution. The Standard Normal has a random variable called Z.

Using the standard normal table, typically called the normal table, to find the probability

of one standard deviation, go to the Z column, reading down to 1.0 and then read at

column 0. That number, 0.3413 is the probability from zero to 1 standard deviation. At

the top of the table is the shaded area in the distribution which is the probability for one

standard deviation. The table has solved our integral calculus problem. But only if our

data has a mean of zero and a standard deviation of 1.
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However, the essential point here is, the probability for one standard deviation on one

normal distribution is the same on every normal distribution. If the population data set

has a mean of 10 and a standard deviation of 5 then the probability from 10 to 15, one

standard deviation, is the same as from zero to 1, one standard deviation on the standard

normal distribution. To compute probabilities, areas, for any normal distribution, we

need only to convert the particular normal distribution to the standard normal

distribution and look up the answer in the tables. As review, here again is the

standardizing formula:

where Z is the value on the standard normal distribution, X is the value from a normal

distribution one wishes to convert to the standard normal, μ and σ are, respectively, the

mean and standard deviation of that population. Note that the equation uses μ and σ
which denotes population parameters. This is still dealing with probability, so we always

are dealing with the population, with known parameter values and a known distribution.

It is also important to note that because the normal distribution is symmetrical it does not

matter if the z-score is positive or negative when calculating a probability. One standard

deviation to the left (negative Z-score) covers the same area as one standard deviation to

the right (positive Z-score). This fact is why the Standard Normal tables do not provide

areas for the left side of the distribution. Because of this symmetry, the Z-score formula

is sometimes written as:

Where the vertical lines in the equation means the absolute value of the number. What

the standardizing formula is really doing is computing the number of standard deviations

X is from the mean of its own distribution.

Check Your Understanding: Using the Normal Distribution

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-38

Probabilities from Density Curves
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One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-40

Check Your Understanding: Probabilities from Density Curves

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-39

Standard Normal Table for Proportion Below

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-41

Standard Normal Table for Proportion Above

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-42

Check Your Understanding: Standard Normal Table for Proportion Below and Above
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-40

Standard Normal Table for Proportion Between Values

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-43

Check Your Understanding: Standard Normal Table for Proportion Between Values

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-41

Finding z-score for a Percentile

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-44

Check Your Understanding: Finding z-score for a Percentile
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#h5p-42

EXPECTATION, VARIANCE AND STANDARD DEVIATION FOR CONTINUOUS

RANDOM VARIABLES

So far, we have looked at expected value, standard deviation, and variance for discrete random

variables. These summary statistics have the same meaning for continuous random variables:

• The expected value is a measure of location or central tendency.

• The standard deviation is a measure of the spread or scale.

• The variance is the square of the standard deviation.

To move from discrete to continuous, we will simply replace the sums in the formulas by

integrals.

Expected Value of a Continuous Random Variable

Definition: Let X be a continuous random variable with range and probability

density function . The expected value of X is defined by

Let us see how this compares with the formula for a discrete random variable:

The discrete formula says to take a weighted sum of the values , where the

weights are the probabilities . Recall that is a probability density. Its units are

prob/(unit of X).

So, represents the probability that X is in an infinitesimal range of width

dx around x. Thus, we can interpret the formula for E(X) as a weighted integral of the

values x of X, where the weights are the probabilities f(x)dx.

As before, the expected value is also called the mean or average.
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Example 1: Let .

Answer: X has range [0,1] and density . Therefore,

Not surprisingly the mean is at the midpoint of the range.

Example 2: Let X have a range .

Answer:

Does it make sense that this X has mean in the right half of its range?

Yes. Since the probability density increases as x increases over the range, the average value

of x should be in the right half of the range.

Figure 26

is “pulled” to the right of the midpoint 1 because there is more mass to the right.

Example 3: Let .

Answer: The range of .

Figure 27: Mean of an exponential random
variable

Example 4: Let .

Answer: The range of
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Figure 28: The standard normal distribution is
symmetric and has mean 0.

Properties of E(X)

The properties of E(X) for continuous random variables are the same as for discrete

ones:

1. If X and Y are random variables on a sample space, then

2. If a and b are constants, then

Example 5: In this example we verify that for we have .

Answer: Example (4) showed that for standard normal Z, . We could

mimic the calculation there to show that . Instead, we will use the

linearity properties of . is a normal random variable we can

standardize it:

Inverting this formula, we have . The linearity of expected value now

gives

Expectation of Functions of X

This works exactly the same as the discrete case. If is a function, then

is a random variable and

Example 6: Let

Answer: Using integration by parts we have
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Variance

Now that we have defined expectation for continuous random variable, the definition of

variance is identical to that of discrete random variables.

Definition: Let X be a continuous random variable with mean . The variance of X is

Properties of Variance

These are exactly the same as in the discrete case.

1. If X and Y are independent, then

2. For constants a and b, .

3. Theorem:

For Property 1, note carefully the requirement that X and Y are independent.

Property 3 gives a formula for that is often easier to use in hand

calculations.

Example 7: Let

Answer: In Example 1 we found . Next, we compute

Example 8: Let

Answer: In Examples 3 and 6 we computed

So, by Property 3,

We could have skipped Property 3 and computed this directly from

Example 9: Let

Note: The notation for normal variables is . This is certainly

suggestive, but as mathematicians we need to prove that

. Above we showed . This example

shows that , just as the notation suggests. In the next example we will

show
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Answer: Since , we have

(Using integration by parts with

The first term equals 0 because the exponential goes to zero much faster than

z grows at both . The second term equals 1 because it is exactly the total

probability integral of the pdf .

Example 10: Let

Answer: This is an exercise in change of variables. Letting , we

have

The integral in the last line is the same one we computed for .

Quantiles

Definition: The median of X is the value x for which , i.e. the value

of x such that . In other words, X has equal probability of

being above or below the median, and each probability is therefore ½. In terms of the

cdf , we can equivalently define the median as the value x satisfying

.

Think: What is the median of Z?

Answer: By symmetry, the median is 0.

Example 11: Find the median of .

Answer: The cdf of . So, the median is the value of x for which

. Solving for x we find: .

Think: In this case the median does not equal the mean of . Based on the graph

of the pdf of X can you argue why the median is to the left of the mean.
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Definition: The

Notes:

1. In this notation the median is

2. We will usually write this in terms of the cdf:

With respect to the pdf is the value such that there is an area of

p to the left of and an area of to the right of . In the examples below, note how

we can represent the quartile graphically using either area of the pdf or height of the cdf.

Example 12: Find the 0.6 quantile for .

Answer: The cdf for

Figure 29

Quantile give a useful measure of location for a random variable.

Percentiles, decile, quartiles

For convenience, quantiles are often described in terms of percentile, decile, or

quantiles. The 60th percentile is the same as the 0.6 quantile. For example, you are

in the 60th percentile for height if you are taller than 60 percent of the population,

i.e., the probability that you are taller than a randomly chosen person is 60 percent.

Likewise, deciles represent steps of 1/10. The third decile is the 0.3 quantile.

Quartiles are in steps of ¼. Third quartile is the 0.75 quantile and the 75th

percentile.

RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section will relate the fundamentals of transportation engineering by discussion and showing

you queuing theory and models to help your understanding.
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QUEUING THEORY: EXPONENTIAL DISTRIBUTION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=271#oembed-45

POISSON MODEL OF VEHICLE ARRIVALS

The Poisson distribution is used to represent arrival patterns at a roadway location to conduct

traffic queue and delay analysis. The distribution helps estimate the likelihood of n vehicles

arriving in a specific time frame and the average arrival rate using data collected from roadway

locations. For more information on the Poisson distribution, the reader is referred to in the

above section labeled “Poisson Distributions.”

DISTRIBUTION OF TIME-MEAN SPEED

Spot speed studies during relatively congestion-free durations are conducted to estimate mean

speed, modal speed, pace, standard deviation, and different percentile of speeds at a roadway

location. 85th percentile speed estimated from a spot speed study is one of the crucial measures

for determining the appropriate speed limit for the roadway section. Speed data for

automobiles on roadway locations collected as part of the spot speed study typically follow the

normal distribution discussed in “The Normal Distribution” section above.

TRAFFIC SAFETY

Traffic safety analysis involves statistical methods that are used to process records of historical

collisions or crash data. The negative binomial distribution is used to describe crash

occurrences on roadway segments and intersections. The negative binomial model’s

formulation is a variant of Poisson’s distribution (see “Poisson Distributions” above) that allows

the standard deviation of the sample to exceed the mean.

Key Takeaways

• Probability distribution functions (PDFs) discussed in the chapter are used in several transportation

engineering modeling applications. For example, arrival patterns at a roadway location critical to queue

analysis follow a Poisson’s distribution while the time interval between arrivals follows a negative

binomial distribution.

• Negative binomial distribution and its variants are also used to model collision frequency on road

segments and intersections. These models, known as Safety Performance Functions, are used to

estimate expected crash frequency on roadway entities.

• Data from spot speed studies are used to ensure that the roadway design context aligns with the
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posted speed limit. The speeds on the roadway segments with no congestion follow a normal

distribution, and the data are used to estimate the mean, median, and 85th percentile of the normal

distribution.
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CHAPTER 9: DATA ANALYSIS - HYPOTHESIS TESTING, ESTIMATING SAMPLE

SIZE, AND MODELING

This chapter provides the foundational concepts and tools for analyzing data commonly seen in the

transportation profession. The concepts include hypothesis testing, assessing the adequacy of the

sample sizes, and estimating the least square model fit for the data. These applications are useful in

collecting and analyzing travel speed data, conducting before-after comparisons, and studying the

association between variables, e.g., travel speed and congestion as measured by traffic density on the

road.

Learning Objectives

• Estimate the required sample size for testing

• Use specific significance tests including, z-test, t-test (one and two samples), chi-squared test

• Compute corresponding p-value for the tests

• Compute and interpret simple linear regression between two variables.

• Estimate a least-squares fit of data.

• Find confidence intervals for parameter estimates.

• Use of spreadsheet tools (e.g., MS Excel) and basic programming (e.g., R or SPSS) to calculate complex

and repetitive mathematical problems similar to earthwork estimates (cut, fill, area, etc.), trip

generation and distribution, and linear optimization.

• Use of spreadsheet tools (e.g., MS Excel) and basic programming (e.g., R or SPSS) to create relevant

graphs and charts from data points.

• Identify topics in the introductory transportation engineering courses that build on the concepts

discussed in this chapter

CENTRAL LIMIT THEOREM

In this section, you will learn about the the central limit theorem by reading each description along

with watching the videos. Also, short problems to check your understanding are included.
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CENTRAL LIMIT THEOREM

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-1

THE CENTRAL LIMIT THEOREM FOR SAMPLE MEANS

The sampling distribution is a theoretical distribution. It is created by taking many samples of

size n from a population. Each sample mean is then treated like a single observation of this

new distribution, the sampling distribution. The genius of thinking this way is that it recognizes

that when we sample, we are creating an observation and that observation must come from

some particular distribution. The Central Limit Theorem answers the question: from what

distribution dis a sample mean come? If this is discovered, then we can treat a sample mean just

like any other observation and calculate probabilities about what values it might take on. We

have effectively moved from the world of statistics where we know only what we have from the

sample to the world of probability where we know the distribution from which the same mean

came and the parameters of that distribution.

The reasons that one samples a population are obvious. The time and expense of checking every

invoice to determine its validity or every shipment to see if it contains all the items may well

exceed the cost of errors in billing or shipping. For some products, sampling would require

destroying them, called destructive sampling. One such example is measuring the ability of a

metal to withstand saltwater corrosion for parts on ocean going vessels.

Sampling thus raises an important question; just which sample was drawn. Even if the sample

were randomly drawn, there are theoretically an almost infinite number of samples. With just

100 items, there are more than 75 million unique samples of size five that can be drawn. If six

are in the sample, the number of possible samples increases to just more than one billion. Of the

75 million possible samples, then, which one did you get? If there is variation in the items to be

sampled, there will be variation in the samples. One could draw an “unlucky” sample and make

very wrong conclusions concerning the population. This recognition that any sample we draw

is really only one from a distribution of samples provides us with what is probably the single

most important theorem is statistics: the Central Limit Theorem. Without the Central Limit

Theorem, it would be impossible to proceed to inferential statistics from simple probability

theory. In its most basic form, the Central Limit Theorem states that regardless of the

underlying probability density function of the population data, the theoretical distribution of

the means of samples from the population will be normally distributed. In essence, this says that

the mean of a sample should be treated like an observation drawn from a normal distribution.

The Central Limit Theorem only holds if the sample size is “large enough” which has been

shown to be only 30 observations or more.

Figure 1 graphically displays this very important proposition.
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Figure 1

Notice that the horizontal axis in the top panel is labeled X. These are the individual

observations of the population. This is the unknown distribution of the population values. The

graph is purposefully drawn all squiggly to show that it does not matter just how odd ball

it really is. Remember, we will never know what this distribution looks like, or its mean or

standard deviation for that matter.

The horizontal axis in the bottom panel is labeled . This is the theoretical distribution called

the sampling distribution of the means. Each observation on this distribution is a sample mean.

All these sample means were calculated from individual samples with the same sample size. The

theoretical sampling distribution contains all of the sample mean values from all the possible

samples that could have been taken from the population. Of course, no one would ever actually

take all of these samples, but if they did this is how they would look. And the Central Limit

Theorem says that they will be normally distributed.

The Central Limit Theorem goes even further and tells us the mean and standard deviation of

this theoretical distribution.

Table 1

Parameter Population distribution Sample Sampling distribution of s

Mean

Standard deviation s

The practical significant of The Central Limit Theorem is that now we can compute
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probabilities for drawing a sample mean, , in just the same way as we did for drawing specific

observations, s, when we knew the population mean and standard deviation and that the

population data were normally distributed. The standardizing formula has to be amended to

recognize that the mean and standard deviation of the sampling distribution, sometimes, called

the standard error of the mean, are different from those of the population distribution, but

otherwise nothing has changed. The new standardizing formula is

Notice that in the first formula has been changed to simply in the second version. The

reason is that mathematically it can be shown that the expected value of is equal to .

SAMPLING DISTRIBUTION OF THE SAMPLE MEAN

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-2

Sampling Distribution of the Sample Mean (Part 2)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-3

Sampling Distributions: Sampling Distribution of the Mean

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-4

USING THE CENTRAL LIMIT THEOREM

Law of Large Numbers

The law of large numbers says that if you take samples of larger and larger size from any

population, then the mean of the sampling distribution, tends to get close and close to

the true population mean, . From the Central Limit Theorem, we know that as n gets larger

and larger, the sample means follow a normal distribution. The larger n gets, the smaller the
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standard deviation of the sampling distribution gets. (Remember that the standard deviation

for sampling distribution of . This means that the sample mean must be closer to

the population mean as n increases. We can say that is the value that the sample means

approach as n gets larger. The Central Limit Theorem illustrates the law of large numbers.

Indeed, there are two critical issues that flow from the Central Limit Theorem and the

application of the Law of Large numbers to it. These are listed below.

1. The probability density function of the sampling distribution of means is normally

distributed regardless of the underlying distribution of the population observations

and

2. Standard deviation of the sampling distribution decreases as the size of the samples

that were used to calculate the means for the sampling distribution increases.

Taking these in order. It would seem counterintuitive that the population may have any

distribution and the distribution of means coming from it would be normally distributed.

With the use of computers, experiments can be simulated that show the process by which the

sampling distribution changes as the sample size is increased. These simulations show visually

the results of the mathematical proof of the Central Limit Theorem.

Figure 2 shows a sampling distribution. The mean has been marked on the horizontal axis of

the and the standard deviation has been written to the right above the distribution. Notice

that the standard deviation of the sampling distribution is the original standard deviation

of the population, divided by the sample size. We have already seen that as the sample size

increases the sampling distribution becomes closer and closer to the normal distribution. As

this happens, the standard deviation of the sampling distribution changes in another way; the

standard deviation decreases as n increases. At very large n, the standard deviation of the

sampling distribution becomes very small and at infinity it collapses on top of the population

mean. This is what it means that the expected value of is the population mean, .

Figure 2

At non-extreme values of n, this relationship between the standard deviation of the sampling

OERTRANSPORT: FUNDAMENTALS OF MATH, PHYSICS, AND STATISTICS FOR FUTURE TRANSPORTATION PROFESSIONALS 239



distribution and the sample size plays a very important part in our ability to estimate the

parameters in which we are interested.

Figure 3 shows three sampling distributions. The only change that was made is the sample size

that was used to get the sample means for each distribution. As the sample size increases, n goes

from 10 to 30 to 50, the standard deviations of the respective sampling distributions decrease

because the sample size is in the denominator of the standard deviations of the sampling

distributions.

Figure 3

The implications for this are very important. Figure 4 shows the effect of the sample size on the

confidence we will have in our estimates. These are two sampling distributions from the same

population. One sampling distribution was created with samples of size 10 and the other with

samples of size 50. All other things constant, the sampling distribution with sample size 50 has

a smaller standard deviation that causes the graph to be higher and narrower. The important

effect of this is that for the same probability of one standard deviation from the mean, this

distribution covers much less of a range of possible values than the other distribution. One

standard deviation is marked on the axis for each distribution. This is shown by the two

arrows that are plus or minus one standard deviation for each distribution. If the probability

that the true mean is one standard deviation away from the mean, then for the sampling

distribution with the smaller sample size, the possible range of values is much greater. A simple

question is, would you rather have a sample mean from the narrow, tight distribution, or the

flat, wide distribution as the estimate of the population mean? Your answer tells us why people

intuitively will always choose data from a large sample rather than a small sample. The sample

mean they are getting is coming from a more compact distribution.
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Figure 4

THE CENTRAL LIMIT THEOREM FOR PROPORTIONS

The Central Limit Theorem tells us that the point estimate for the sample mean, , comes from

a normal distribution of . This theoretical distribution is called the sampling distribution of

. We now investigate the sampling distribution for another important parameter we wish to

estimate, p from the binomial probability density function.

If the random variable is discrete, such as for categorical data, then the parameter we wish to

estimate is the population proportion. This is, of course, the probability of drawing a success in

any one random draw. Unlike the case just discussed for a continuous random variable where

we did not know the population distribution of X’s, here we actually know the underlying

probability density function for these data; it is the binomial. The random variable is X = the

number of successes and the parameter we wish to know is p, the probability of drawing a

success which is of course the proportion of successes in the population. The question at issue

is: from what distribution was the sample proportion, drawn? The sample size is n

and X is the number of successes found in that sample. This is a parallel question that was

just answered by the Central Limit Theorem: from what distribution was the sample mean,

drawn? We saw that once we knew that the distribution was the Normal distribution then we

were able to create confidence intervals for the population parameter, . We will also use this

same information to test hypotheses about the population mean later. We wish now to be able

to develop confidence intervals for the population parameter “p” from the binomial probability

density function.

In order to find the distribution from which sample proportions come we need to develop the

sampling distribution of sample proportions just as we did for sample means. So again, imagine

that we randomly sample say 50 people and ask them if they support the new school bond issue.

From this we find a sample proportion, p’, and graph it on the axis of p’s. We do this again and

again etc., etc. until we have the theoretical distribution of p’s. Some sample proportions will

show high favorability toward the bond issue and others will show low favorability because
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random sampling will reflect the variation of views within the population. What we have done

can be seen in Figure 5. The top panel is the population distributions of probabilities for each

possible value of the random variable X. While we do not know what the specific distribution

looks like because we do not know p, the population parameter, we do know that it must look

something like this. In reality, we do not know either the mean or the standard deviation of this

population distribution, the same difficulty we faced when analyzing the X’s previously.

Figure 5

Figure 5 places the mean on the distribution of population probabilities as but of

course we do not actually know the population mean because we do not know the population

probability of success, p. Below the distribution of the population values is the sampling

distribution of p’s. Again, the Central Limit Theorem tells us that this distribution is normally

distributed just like the case of the sampling distribution for . This sampling distribution

also has a mean, the mean of the p’s, and a standard deviation, .

Importantly, in the case of the analysis of the distribution of sample means, the Central Limit

Theorem told us the expected value of the mean of the sample means in the sampling

distribution, and the standard deviation of the sampling distribution. Again, the Central Limit

Theorem provides this information for the sampling distribution for proportions. The answers

are:

1. The expected value of the mean of sampling distribution of sample proportions, , is
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the population proportion, p.

2. The standard deviation of the sampling distribution of sample proportions, , is the

population standard deviation divided by the square root of the sample size, n.

Both these conclusions are the same as we found for the sampling distribution for sample

means. However, in this case, because mean and standard deviation of the binomial distribution

both rely upon p, the formula for the standard deviation of the sampling distribution requires

algebraic manipulation to be useful. The standard deviation of the sampling distribution for

proportions is thus:

Table 2

Parameter Population distribution Sample Sampling distribution of p‘s

Mean

Standard deviation

Table 2 summarizes these results and shows the relationship between the population, sample,

and sampling distribution.

Reviewing the formula for the standard deviation of the sampling distribution for proportions

we see that as n increases the standard deviation decreases. This is the same observation we

made for the standard deviation for the sampling distribution for means. Again, as the sample

size increases, the point estimate for either is found to come from a distribution with

a narrower and narrower distribution. We concluded that with a given level of probability, the

range from which the point estimate comes is smaller as the sample size, n, increases.

FIND CONFIDENCE INTERVALS FOR PARAMETER ESTIMATES

In this section, you will learn how to find and estimate confidence intervals by reading each

description along with watching the videos included. Also, short problems to check your

understanding are included.

CONFIDENCE INTERVALS & ESTIMATION: POINT ESTIMATES EXPLAINED

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-5

INTRODUCTION TO CONFIDENCE INTERVALS

Suppose you were trying to determine the mean rent of a two-bedroom apartment in your
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town. You might look in the classified section of the newspaper, write down several rents listed,

and average them together. You would have obtained a point estimate of the true mean. If you

are trying to determine the percentage of times you make a basket when shooting a basketball,

you might count the number of shots you make and divide that by the number of shots you

attempted. In this case, you would have obtained a point estimate for the true proportion the

parameter p in the binomial probability density function.

We use sample data to make generalizations about an unknown population. This part of

statistics is called inferential statistics. The sample data help us to make an estimate of a

population parameter. We realize that the point estimate is most likely not the exact value of the

population parameter, but close to it. After calculating point estimates, we construct interval

estimates, called confidence intervals. What statistics provides us beyond a simple average, or

point estimate, is an estimate to which we can attach a probability of accuracy, what we will call

a confidence level. We make inferences with a known level of probability.

If you worked in the marketing department of an entertainment company, you might be

interested in the mean number of songs a consumer downloads a month from iTunes. If so, you

could conduct a survey and calculate the sample mean, , and the sample standard deviation,

s. You would use to estimate the population mean and s to estimate the population standard

deviation. The same mean, , is the point estimate for the population mean, . The sample

standard deviation, s, is the point estimate for the population standard deviation, .

and s are each called a statistic.

A confidence interval is another type of estimate but, instead of being just one number, it is an

interval of numbers. The interval of numbers is a range of values calculated from a given set of

sample data. The confidence interval is likely to include the unknown population parameter.

Suppose for the iTunes examples, we do not know the population mean , but we do know that

the population standard deviation is and our sample size is 100. Then, by the Central

Limit Theorem, the standard deviation of the sampling distribution of the sample means is

.

The Empirical Rule, which applies to the normal distribution, says that in approximately 95%

of the samples, the same mean, , will be within two standard deviations of the population mean

. For our iTunes example, two standard deviations is . The sample mean is

likely to be within 0.2 units of .

Because is within 0.2 units of which is unknown, then is likely to be within 0.2 units of

with 95% probability. The population mean is contained in an interval whose lower number

is calculated by taking the sample mean and subtracting two standard deviations

and whose upper number is calculated by taking the sample mean and adding two standard

deviations. In other words, is between in 955 of all the samples.

For the iTunes example, suppose that a sample produced a sample mean . Then with 95%

probability the unknown population mean is between

244 MAVS OPEN PRESS



We say that we are 95% confident that the unknown population mean number of songs

downloaded from iTunes per month is between 1.8 and 2.2. The 95% confidence interval is

(1.8, 2.2). Please note that we talked in terms of 95% confidence using the empirical rule. The

empirical rule for two standard deviations is only approximately 95% of the probability under

the normal distribution. To be precise, two standard deviations under a normal distribution is

actually 95.44% of the probability. To calculate the exact 95% confidence level, we would use

1.96 standard deviations.

The 95% confidence interval implies two possibilities. Either the interval (1.8, 2.2) contains the

true mean⯑">⯑, or our sample produce an that is not within 0.2 units of the true mean⯑">⯑.

The first possibility happens for 95% of well-chosen samples. It is important to remember that

the second possibility happens for 5% of samples, even though correct procedures are followed.

Remember that a confidence interval is created for an unknown population parameter like the

population mean,⯑">⯑.

For the confidence interval for a mean the formula would be:

Or written another way as:

Where s is the sample mean. a is determined by the level of confidence desired by the

analyst, and is the standard deviation of the sampling distribution for means given to us

by the Central Limit Theorem.

A CONFIDENCE INTERVAL FOR A POPULATION STANDARD DEVIATION,

KNOWN OR LARGE SAMPLE SIZE

A confidence interval for a population mean, when the population standard deviation is known

based on the conclusion of the Central Limit Theorem that the sampling distribution of the

sample means follow an approximately normal distribution.

Calculating the Confidence Interval

Consider the standardizing formula for the sampling distribution developed in the discussion

of the Central Limit Theorem:

Notice that is substituted for – because we know that the expected value of – is

from the Central Limit Theorem and – is replaced with , also from the Central

Limit Theorem.
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In this formula we know and n, the sample size. (In actuality we do not know the

population standard deviation, but we do have a point estimate for it, s, from the sample we

took. More on this later.) What we do not know is We can solve for either one of

these in terms of the other. Solving for⯑">⯑ in terms of gives:

Remembering that the Central Limit Theorem tells us that the distribution of the , the

sampling distribution for means, is normal, and that the normal distribution is symmetrical, we

can rearrange terms thus:

This is the formula for a confidence interval for the mean of a population.

Notice that has been substituted for in this equation. This is where the statistician must

make a choice. The analyst must decide the level of confidence they wish to impose on the

confidence interval. is the probability that the interval will not contain the true population

mean. The confidence level is defined as is the number of standard deviations

lies from the mean with a certain probability. If we chose, we are asking for the

95% confidence interval because we are setting the probability that the true mean lies within

the range at 0.95. If we set at 1.64 we are asking for the 90% confidence interval because

we have set the probability at 0.90. These numbers can be verified by consulting the Standard

Normal table. Divide either 0.95 or 0.90 in half and find that probability inside the body of the

table. Then read on the top and left margins the number of standard deviations it takes to get

this level of probability.

Table 3

Confidence Level

0.80 1.28

0.90 1.645

0.95 1.96

0.99 2.58

In reality, we can set whatever level of confidence we desire simply by changing the value

in the formula. It is the analyst’s choice. Common convention in Economics and most social

sciences sets confidence intervals at either 90, 95, or 99 percent levels. Levels less than 90%

are considered of little value. The level of confidence of a particular interval estimate is called

.

Let us say we know that the actual population mean number of iTunes downloads is 2.1. The

true population mean falls within the range of the 95% confidence interval. There is absolutely

nothing to guarantee that this will happen. Further, if the true mean falls outside of the

interval, we will never know it. We must always remember that we will never ever know

the true mean. Statistics simply allows us, with a given level of probability (confidence), to say

that the true mean is within the range calculated.
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Changing the Confidence Level or Sample Size

Here again is the formula for a confidence interval for an unknown population mean assuming

we know the population standard deviation:

It is clear that the confidence interval is driven by two things, the chosen level of confidence, ,

and the standard deviation of the sampling distribution. The standard deviation of the sampling

distribution is further affected by two things, the standard deviation of the population and

sample size we chose for our data. Here we wish to examine the effects of each of the choices

we have made on the calculated confidence interval, the confidence level, and the sample size.

For a moment we should ask just what we desire in a confidence interval. Our goal was to

estimate the population mean from a sample. We have forsaken the hope that we will ever

find the true population mean, and population standard deviation for that matter, for any

case except where we have an extremely small population and the cost of gathering the data

of interest is very small. In all other cases we must rely on samples. With the Central Limit

Theorem, we have the tools to provide a meaningful confidence interval with a given level of

confidence, meaning a known probability of being wrong. By meaningful confidence interval

we mean one that is useful. Imagine that you are asked for a confidence interval for the ages

of your classmates. You have taken a sample and find a mean of 19.8 years. You wish to be

very confident, so you report an interval between 9.8 years and 29.8 years. This interval would

certainly contain the true population mean and have a very high confidence level. However,

it hardly qualifies as meaningful. The very best confidence interval is narrow while having

high confidence. There is a natural tension between these two goals. The higher the level of

confidence the wider the confidence interval as the case of the students’ ages above. We can see

this tension in the equation for the confidence interval.

The confidence interval will increase in width as increases, increases as the level of

confidence increases. There is a tradeoff between the level of confidence and the width of

the interval. Now let us look at the formula again and we see that the sample size also plays

an important role in the width of the confidence interval. The sample size, n, shows up in

the denominator of the standard deviation of the sampling distribution. As the sample size

increases, the standard deviation of the sampling distribution decreases and thus the width

of the confidence interval, while holding constant the level of confidence. Again, we see the

importance of having large samples for our analysis although we then face a second constraint,

the cost of gathering data.

Calculating the Confidence Interval: An Alternative Approach

Another way to approach confidence intervals is through the use of something called the Error

Bound (margin of error). The Error Bound gets its name from the recognition that it provides

the boundary of the interval derived from the standard error of the sampling distribution. In the
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equations above it is seen that the interval is simply the estimated mean, sample mean, plus or

minus something. That something is the Error Bound and is driven by the probability we desire

to maintain in our estimate, , times the standard deviation of the sampling distribution. The

Error Bound for a mean is given the name, Error Bound Mean, or EBM (or margin of error,

M.O.E.).

To construct a confidence interval for a single unknown population, mean ⯑">⯑, where the

population standard deviation is known, we need as an estimate for⯑">⯑ and we need the

margin of error. Here, the margin of error (EBM) is called the error bound for a population

mean. The sample mean is the point estimate of the unknown population mean⯑">⯑.

The confidence interval estimate will have the form:

(Point estimate – error bound, point estimate + error bound) or, in symbols,

The mathematical formula for this confidence interval is:

The margin of error (EBM) depends on the confidence level (abbreviated CL). The confidence

level is often considered the probability that the calculated confidence interval estimate will

contain the true population parameter. However, it is more accurate to state that the confidence

level is the percent of confidence intervals that contain the true population parameter when

repeated samples are taken. Most often, it is the choice of the person constructing the

confidence interval to choose a confidence level of 90% or higher because that person wants to

be reasonably certain of his or her conclusions.

There is another probability called alpha is related to the confidence level, CL. is

the probability that the interval does not contain the unknown population parameter.

Mathematically, .

A confidence interval for a population mean with a known standard deviation is based on

the fact that the sampling distribution of the sample means follow an approximately normal

distribution. Suppose that our sample has a mean of and we have constructed the 90%

confidence interval (5, 15) where EMB = 5.

To get a 90% confidence interval, we must include the central 90% of the probability of the

normal distribution. If we include the central 90%, we leave out a total of in both

tails, or 5% in each tail, of the normal distribution.
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Figure 6

To capture the central 90%, we must go out 1.645 standard deviations on either side of the

calculated sample mean. The value 1.645 is the z-score from a standard normal probability

distribution that puts an area of 0.90 in the center, an area of 0.05 in the far-left tail, and an area

of 0.05 in the far-right tail.

It is important that the standard deviation used must be appropriate for the parameter we are

estimating, so in this section we need to use the standard deviation that applies to the sampling

distribution for mean which we studied with the Central Limit Theorem and is, .

Calculating the Confidence Interval Using EBM

To construct a confidence interval, estimate for an unknown population mean, we need data

from a random sample. The steps to construct and interpret the confidence interval are listed

below.

• Calculate the sample mean from the sample data. Remember, in this section we know the

population standard deviation .

• Find the z-score from the standard normal table that corresponds to the confidence level

desired.

• Calculate the error bound EBM.

• Construct the confidence interval.

• Write a sentence that interprets the estimate in the context of the situation in the problem.

Finding the z-score for the Stated Confidence Level

When we know the population standard deviation , we use a standard normal distribution

to calculate the error bound EBM and construct the confidence interval. We need to find the

value of z that puts an area equal to the confidence level (in decimal form) in the middle of the

standard normal distribution .
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The confidence level, CL, is the area in the middle of the standard normal distribution.

is the area that is split equally between the two tails. Each of the tails

contains an area equal to .

The z-score that has an area to the right of is denoted by

For example, when

The area to the right of is

.

, using a standard normal probability table. We will see later that we can

use a different probability table, the Student’s t-distribution, for finding the number of standard

deviations of commonly used levels of confidence.

Calculating the Error Bound (EBM)

The error bound formula for an unknown population mean when the population standard

deviation is known as

Constructing the Confidence Interval

The confidence interval estimate has the format or the formula:

The graph gives a picture of the entire situation.

Figure 7
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Confidence Interval for Mean: 1 Sample Z Test (Using Formula)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-6

Check Your Understanding: Confidence Interval for Mean

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-44

A CONFIDENCE INTERVAL FOR A POPULATION STANDARD DEVIATION

UNKNOWN, SMALL SAMPLE CASE

In practice, we rarely known the population standard deviation. In the past, when the sample

size was large, this did not present a problem to statisticians. They used the sample standard

deviation s as an estimate for and proceeded as before to calculate a confidence interval with

close enough results. Statisticians ran into problems when the sample size was small. A small

sample size caused inaccuracies in the confidence interval.

William S. Goset (1876-1937) of the Guinness brewery in Dublin, Ireland ran into this problem.

His experiments with hops and barely produced very few samples. Just replacing with s did

not produce accurate results when he tried to calculate a confidence interval. He realized that

he could not use a normal distribution for the calculation; he found that the actual distribution

depends on the sample size. This problem led him to “discover” what is called the Student’s t-

distribution. The name comes from the fact that Gosset wrote under the pen name “A Student.”

Up until the mid-1970s, some statisticians used the normal distribution approximation for

large sample sizes and used the Student’s t-distribution only for sample sizes of at most 30

observations.

If you draw a simple random sample of size n from a population with mean⯑">⯑ and unknown

population standard deviation and calculate the t-score , then the t-scores follow

a Student’s t-distribution with n – 1 degrees of freedom. The t-score has the same

interpretation as the z-score. It measures how far in standard deviation units is from its mean

. For each sample size n, there is a different Student’s t-distribution.
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The degrees of freedom, n – 1, come from the calculation of the sample standard deviation

s. Remember when we first calculated a sample standard deviation, we divided the sum of the

squared deviations by , but we used n deviations to calculate s. Because

the sum of the deviations is zero, we can find the last deviation once we know the other

deviations. The other deviations can change or vary freely. We call the number the

degrees of freedom (df) in recognition that one is lost in the calculations. The effect of losing a

degree of freedom is that the t-value increases, and the confidence interval increases in width.

Properties of the Student’s t-distribution

• The graph for the Student’s t-distribution is similar to the standard normal curve and at

infinite degrees of freedom it is the normal distribution. You can confirm this by reading the

bottom line at infinite degrees of freedom for a familiar level of confidence, e.g., at column

0.05, 95% level of confidence, we find the t-value of 1.96 at infinite degrees of freedom.

• The mean for the Student’s t-distribution is zero and the distribution is symmetric about zero,

again like the standard normal distribution.

• The Student’s t-distribution has more probability in its tails than the standard normal

distribution because the spread of the t-distribution is greater than the spread of the standard

normal. So, the graph of the Student’s t-distribution will be thicker in the tails and shorter in

the center than the graph of the standard normal distribution.

• The exact shape of the Student’s t-distribution depends on the degrees of freedom. As the

degrees of freedom increases, the graph of Student’s t-distribution becomes more like the

graph of the standard normal distribution.

• The underlying population of individual observations is assumed to be normally distributed

with unknown population mean and unknown population standard deviation ⯑. This

assumption comes from the Central Limit Theorem because the individual observations in this

case are the of the sample distribution. The size of the underlying population is generally

not relevant unless it is very small. If it is normal, then the assumption is met and does not

need discussion.

A probability table for the Student’s t-distribution is used to calculate t-values at various

commonly used levels of confidence. The table gives t-scores that correspond to the confidence

level (column) and degrees of freedom (row). When using a t-table, note that some tables are

formatted to show the confidence level in the column headings, while the column headings in

some tables may show only corresponding area in one or both tails. Notice that at the bottom

the table will show the t-value for infinite degrees of freedom. Mathematically, as the degrees of

freedom increase, the t-distribution approaches the standard normal distribution. You can find

familiar Z-values by looking in the relevant alpha column and reading value in the last row.

A Student’s t-table (link) gives t-scores given the degrees of freedom and the right-tailed

probability.
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The Student’s t-distribution has one of the most desirable properties of the normal: it is

symmetrical. What the Student’s t-distribution does is spread out the horizontal axis, so it takes

a larger number of standard deviations to capture the same amount of probability. In reality

there are an infinite number of Student’s t-distributions, one for each adjustment to the sample

size. As the sample size increases, the Student’s t-distribution become more and more like

the normal distribution. When the sample size reaches 30 the normal distribution is usually

substituted for the Student’s t because they are so much alike. This relationship between the

Student’s t-distribution and the normal distribution is shown in Figure 8.

Figure 8

Here is the confidence interval for the mean for cases when the sample size is smaller than 30

and we do not know the population standard deviation, :

Here the point estimate of the population standard deviation, s has been substituted for the

population standard deviation, , and has been substituted for . The Greek letter

(pronounced nu) is places in the general formula in recognition that there are many Student

distributions, one for each sample size. is the symbol for the degrees of freedom of the

distribution and depends on the size of the sample. Often df is used to abbreviate degrees of

freedom. For this type of problem, the degrees of freedom is , where n is the sample

size. To look up a probability in the Student’s t table we have to know the degrees of freedom in

the problem.

Confidence Intervals: Using the t Distribution

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-7
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Check Your Understanding: Confidence Intervals

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-45

A CONFIDENCE INTERVAL FOR A POPULATION PROPORTION

During an election year, we see articles in the newspaper that state confidence intervals in

terms of proportions or percentages. For example, a poll for a particular candidate running for

president might show that the candidate has 40% of the vote within three percentage points (if

the sample is large enough). Often, election polls are calculated with 95% confidence, so, the

pollsters would be 95% confident that the true proportion of voters who favored the candidate

would be between 0.37 and 0.43.

The procedure to find the confidence interval for a population proportion is similar to that

for the population mean, but the formulas are a bit different although conceptually identical.

While the formulas are different, they are based upon the same mathematical foundation given

to us by the Central Limit Theorem. Because of this we will see the same basic format using the

same three pieces of information: the sample value of the parameter in question, the standard

deviation of the relevant sampling distribution, and the number of standard deviations we need

to have the confidence in our estimate that we desire.

How do you know you are dealing with a proportion problem? First, the underlying

distribution has a binary random variable and therefore is a binomial distribution. (There

is no mention of a mean or average). If X is a binomial random variable, then

where n is the number of trials and p is the probability of a success. To form a sample

proportion, take X, the random variable for the number of successes and divide it by n, the

number of trials (or the sample size). The random variable (read “P Prime”) is the sample

proportion,

(Sometimes the random variable is denoted as , read “P hat.”)

= the estimated proportion of successes or sample proportion of successes (p’ is a point

estimate for p, the true population proportion, and thus q is the probability of a failure in any

one trial.)

x = the number of successes in the sample
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n = the size of the sample

The formula for the confidence interval for a population proportion follows the same format

as that for an estimate of a population mean. Remembering the sampling distribution for the

proportion, the standard deviation was found to be:

The confidence interval for a population proportion, therefore, becomes:

is set according to our desired degree of confidence and is the standard

deviation of the sampling distribution.

The sample proportions p’ and q’ are estimates of the unknown population proportions p

and q. The estimated proportions p’ and q’ are used because p and q are not known.

Remember that as p moves further from 0.5 the binomial distribution becomes less

symmetrical. Because we are estimating the binomial with the symmetrical normal distribution

the further away from symmetrical the binomial becomes the less confidence we have in the

estimate.

This conclusion can be demonstrated through the following analysis. Proportions are based

upon the binomial probability distribution. The possible outcomes are binary, either “success”

or “failure.” This gives rise to a proportion, meaning the percentage of the outcomes that are

“successes.” It was shown that the binomial distribution could be fully understood if we knew

only the probability of a success in any one trial, called p. The mean and the standard deviation

of the binomial were found to be:

It was also shown that the binomial could be estimated by the normal distribution if BOTH np

AND nq were greater than 5. From the discussion above, it was found that the standardizing

formula for the binomial distribution is:

Which is nothing more than a restatement of the general standardizing formula with

appropriate substitutions for and from the binomial. We can use the standard normal

distribution, the reason Z is in the equation, because the normal distribution is the limiting

distribution of the binomial. This is another example of the Central Limit Theorem.
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We can now manipulate this formula in just the same way we did for finding the confidence

intervals for a mean, but to find the confidence interval for the binomial population parameter,

p.

Where , the point estimate of p taken from the sample. Notice that p’ has replaced p in

the formula. This is because we do not know p, indeed, this is just what we are trying to estimate.

x = number of successes.

n = the number in the sample.

, the failure in any trial

Unfortunately, there is no correction factor for cases where the sample size is small so np’ and

nq’ must always be greater than 5 to develop an interval estimate for p.

Also written as:

How to Construct a Confidence Interval for Population Proportion

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-8

Check Your Understanding: How to Construct a Confidence Interval for Population
Proportion

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-46

ESTIMATE THE REQUIRED SAMPLE SIZE FOR TESTING

In this section, you will learn how to calculate sample size with continuous and binary random
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samples. by reading each description along with watching the videos included. Also, short problems

to check your understanding are included.

Calculating the Sample Size n: Continuous and Binary Random Variables

Continuous Random Variables

Usually, we have no control over the sample size of a data set. However, if we are able to set

the sample size, as in cases where we are taking a survey, it is very helpful to know just how

large it should be to provide the most information. Sampling can be very costly in both time and

product. Simple telephone surveys will cost approximately $30.00 each, for example, and some

sampling requires the destruction of the product.

If we go back to our standardizing formula for the sampling distribution for means, we can see

that it is possible to solve it for n. If we do this, we have in the denominator.

Because we have not taken a sample, yet we do not know any of the variables in the formula

except that we can set to the level of confidence we desire just as we did when determining

confidence intervals. If we set a predetermined acceptable error, or tolerance, for the difference

between in the formula, we are much further in solving for the sample size

n. We still do not know the population standard deviation, . In practice, a pre-survey is usually

done which allows for fine tuning the questionnaire and will give a sample standard deviation

that can be used. In other cases, previous information from other surveys may be used for

in the formula. While crude, this method of determining the sample size may help in reducing

cost significantly. If will be the actual data gathered that determines the inferences about the

population, so caution in the sample size is appropriate calling for high levels of confidence and

small sampling errors.

Binary Random Variables

What was done in cases when looking for the mean of a distribution can also be done when

sampling to determine the population parameter p for proportions. Manipulation of the

standardizing formula for proportions gives:

Where , and is the acceptable sampling error, or tolerance, for this application.

This will be measured in percentage points.

In this case the very object of our search is in the formula, p, and of course q because

. This result occurs because the binomial distribution is a one parameter distribution. If we

know p then we know the mean and the standard deviation. Therefore, p shows up in the

standard deviation of the sampling distribution which is where we got this formula. If, in an

abundance of caution, we substitute 0.5 for p we will draw the largest required sample size that

will provided the level of confidence specified by and the tolerance we have selected. This is
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true because of all combinations of two fractions that add to one, the largest multiple is when

each is 0.5. Without any other information concerning the population parameter p, this is the

common practice. This may result in oversampling, but certainly not under sampling, thus, this

is a cautious approach.

There is an interesting trade-off between the level of confidence and the sample size that shows

up here when considering the cost of sampling. Table 4 shows the appropriate sample size at

different levels of confidence and different level of the acceptable error, or tolerance.

Table 4

Required sample size (90%) Required sample size (95%) Tolerance level

1691 2401 2%

752 1067 3%

271 384 5%

68 96 10%

Table 4 is designed to show the maximum sample size required at different levels of confidence

given an assumed as discussed above.

The acceptable error, called tolerance in the table, is measured in plus or minus values from the

actual proportion. For example, an acceptable error of 5% means that if the sample proportion

was found to be 26 percent, the conclusion would be that the actual population proportion is

between 21 and 31 percent with a 90 percent level of confidence if a sample of 271 had been

taken. Likewise, if the acceptable error was set at 2%, then the population proportion would be

between 24 and 28 percent with a 90 percent level of confidence but would require that the

sample size be increased from 271 to 1,691. If we wished a higher level of confidence, we would

require a larger sample size. Moving from a 90 percent level of confidence to a 95 percent level

at a plus or minus 5% tolerance requires changing the sample size from 271 to 384. A very

common sample size often seen reported in political surveys is 384. With the survey results it is

frequently stated that the results are good to a plus or minus 5% level of “accuracy”.

Example: Suppose a mobile phone company wants to determine the current percentage of

customers aged 50+ who use text messaging on their cell phones. How many customers aged

50+ should the company survey in order to be 90% confident that the estimated (sample)

proportion is within three percentage points of the true population proportion of customers

aged 50+ who use text messaging on their cell phones.

Solution: From the problem, we know that the acceptable error, e, is 0.03 (3% = 0.03) and

, because the confidence level is 90%. The acceptable error, e, is the

difference between the actual population proportion p, and the sample proportion we expect to

get from the sample.

However, in order to find n, we need to know the estimated (sample) proportion p’. Remember

that . But we do not know p’ yet. Since we multiply p’ and q’ together, we make them

both equal to 0.5 because results in the largest possible product.

(Try other products: and so on).
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The largest possible product gives us the largest n. This gives us a large enough sample so that

we can be 90% confident that we are within three percentage points of the true population

proportion. To calculate the sample size n, use the formula and make the substitutions.

Round the answer to the next higher value. The sample size should be 752 cell phone customers

aged 50+ in order to be 90% confident that the estimated (sample) proportion is within three

percentage points of the true population proportion of all customers aged 50+ who use text

messaging on their cell phones.

ESTIMATION AND CONFIDENCE INTERVALS: CALCULATE SAMPLE SIZE

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-9

CALCULATING SAMPLE SIZE TO PREDICT A POPULATION PROPORTION

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-10

USE SPECIFIC SIGNIFICANCE TESTS INCLUDING, Z-TEST, T-TEST (ONE AND TWO

SAMPLES), CHI-SQUARED TEST

In this section, you will learn the fundamentals of hypothesis testing along with hypothesis testing

with errors by reading each description along with watching the videos. Also, short problems to check

your understanding are included.

HYPOTHESIS TESTING WITH ONE SAMPLE

Statistical testing is part of a much larger process known as the scientific method. The scientific

method, briefly, states that only by following a careful and specific process can some assertion

be included in the accepted body of knowledge. This process begins with a set of assumptions

upon which a theory, sometimes called a model, is built. This theory, if it has any validity, will

lead to predictions; what we call hypotheses.

Statistics and statisticians are not necessarily in the business of developing theories, but in the

business of testing others’ theories. Hypotheses come from these theories based upon an explicit
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set of assumptions and sound logic. The hypothesis comes first, before any data are gathered.

Data do not create hypotheses; they are used to test them. If we bear this in mind as we study

this section, the process of forming and testing hypotheses will make more sense.

One job of a statistician is to make statistical inferences about populations based on samples

taken from the population. Confidence intervals are one way to estimate a population

parameter. Another way to make a statistical inference is to make a decision about the value

of a specific parameter. For instance, a car dealer advertises that its new small truck gets 35

miles per gallon, on average. A tutoring service claims that its method of tutoring helps 90% of

its students get an A or a B. A company says that women managers in their company earn an

average of $60,000 per year.

A statistician will make a decision about these claims. This process is called “hypothesis

testing.” A hypothesis test involves collecting data from a sample and evaluating the data. Then,

the statistician makes a decision as to whether or not there is sufficient evidence, based upon

analyses of the data, to reject the null hypothesis.

Hypothesis Testing: The Fundamentals

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-11

Null and Alternative Hypotheses

The actual test begins by considering two hypotheses. They are called the null

hypothesis and the alternative hypothesis. These hypotheses contain opposing

viewpoints.

The null hypothesis: It is a statement of no difference between the variables–they

are not related. This can often be considered the status quo and as a result if you cannot

accept the null, it requires some action.

The alternative hypothesis: It is a claim about the population that is contradictory

to and what we conclude when we cannot accept . This is usually what the

researcher is trying to prove. The alternative hypothesis is the contender and must win

with significant evidence to overthrow the status quo. This concept is sometimes referred

to the tyranny of the status quo because as we will see later, to overthrow the null

hypothesis takes usually 90 or greater confidence that this is the proper decision.

Since the null and alternative hypotheses are contradictory, you must examine evidence

to decide if you have enough evidence to reject the null hypothesis or not. The evidence

is in the form of sample data.
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After you have determined which hypothesis the sample supports, you make a decision.

There are two options for a decision. They are “cannot accept ” if the sample

information favors the alternative hypothesis or “do not reject ” or “decline to reject

” if the sample information is insufficient to reject the null hypothesis. These conclusions

are all based upon a level of probability, a significance level, that is set by the analyst.

Table 5 presents the various hypotheses in the relevant pairs. For example, if the null

hypothesis is equal to some value, the alternative has to be not equal to that value.

Table 5

Equal (=) Not equal

Greater than or equal to Less than (<)

Less than or equal to More than (>)

Note: As a mathematical convention always has a symbol with an equal in it.

never has a symbol with an equal in it. The choice of symbol depends on the wording of

the hypothesis test.

Example 1:

: No more than 30% of the registered voters in Santa Clara County voted in the

primary election.

: More than 30% of the registered voters in Santa Clara County voted in the primary

election.

Example 2: We wants to test whether the mean GPA of students in American colleges is

different from 2.0 (out of 4.0). The null and alternative hypotheses are:

Example 3: We want to test if college students take less than five years to graduate from

college, on the average. The null and alternative hypotheses are:

Hypothesis Testing: Setting up the Null and Alternative Hypothesis Statements
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One or more interactive elements has been excluded from this version of the text. You can view them online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-12

Outcomes and the Type I and Type II Errors

When you perform a hypothesis test, there are four possible outcomes depending

on the actual truth (or falseness) of the null hypothesis and the decision to reject

or not. The outcomes are summarized in Table 6:

Table 6

Statistical Decision is actually…

True False

Cannot reject Correct outcome Type II error

Cannot accept Type I error Correct outcome

The four possible outcomes in the table are:

1. The decision is cannot reject when is true (correct decision).

2. The decision is cannot accept when is true (incorrect decision

known as a Type I error). This case is described as “rejecting a good null”.

As we will see later, it is this type of error that we will guard against by

setting the probability of making such an error. The goal is to NOT take

an action that is an error.

3. The decision is cannot reject when, in fact, is false (incorrect

decision known as a Type II error). This is called “accepting a false null”.

In this situation you have allowed the status quo to remain in force when

it should be overturned. As we will see, the null hypothesis has the

advantage in competition with the alternative.

4. The decision is cannot accept when is false (correct decision).

Each of the errors occurs with a particular probability. The Greek letters and

represent the probabilities.

probability of a Type I error = P(Type I error) = probability of rejecting the

null hypothesis when the null hypothesis is true: rejecting a good null.

probability of a Type II error = P(Type II error) = probability of not rejecting

the null hypothesis when the null hypothesis is false. is called the Power of

the Test.
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should be as small as possible because they are probabilities of errors.

Statistics allows us to set the probability that we are making a Type I error. The

probability of making a Type I error is . Recall that the confidence intervals in

the last section were set by choosing a value called and the alpha value

determined the confidence level of the estimate because it was the probability of

the interval failing to capture the true mean (or proportion parameter p). This alpha

and that one are the same.

The easiest way to see the relationship between the alpha error and the level of

confidence is in Figure 9.

Figure 9

In the center of Figure 9 is a normally distributed sampling distribution marked

. This is a sampling distribution of and by the Central Limit Theorem it is

normally distributed. The distribution in the center is marked and represents

the distribution for the null hypotheses . This is the value that is

being tested. The formal statements of the null and alternative hypotheses are listed

below the figure.

The distributions on either side of the distribution represent distributions that

would be true if is false, under the alternative hypothesis listed as . We do

not know which is true, and will never know. There are, in fact, an infinite number

of distributions from which the data could have been drawn if is true, but only

two of them are on Figure 9 representing all of the others.

To test a hypothesis, we take a sample from the population and determine if it

could have come from the hypothesized distribution with an acceptable level of

significance. This level of significance is the alpha error and is marked on Figure

9 as the shaded areas in each tail of the distribution. (Each are actually

because the distribution is symmetrical, and the alternative hypothesis allows for

the possibility for the value to be either greater than or less than the hypothesized

value–called a two-tailed test).
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If the sample mean marked as is in the tail of the distribution of , we

conclude that the probability that it could have come from the distribution is

less than alpha. We consequently state, “the null hypothesis cannot be accepted with

level of significance.” The truth may be that this did come from the

distribution, but from out in the tail. If this is so, then we have falsely rejected a true

null hypothesis and have made a Type I error. What statistics has done is provide

an estimate about what we know, and what we control, and that is the probability

of us being wrong, .

We can also see in Figure 9 that the sample mean could be really from an

distribution, but within the boundary set by the alpha level. Such a case is marked

as . There is a probability that actually came from but shows up in the

range of between the two tails. This probability is the beta error, the probability

of accepting a false null.

Our problem is that we can only set the alpha error because there are an infinite

number of alternative distributions from which the mean could have come that

are not equal to . As a result, the statistician places the burden of proof on the

alternative hypothesis. That is, we will not reject a null hypothesis unless there is

a greater than 90, or 95, or even 99 percent probability that the null is false: the

burden of proof lies with the alternative hypothesis. This is why we called this the

tyranny of the status quo earlier.

By way of example, the American judicial system begins with the concept that a

defendant is “presumed innocent”. This is the status quo and is the null hypothesis.

The judge will tell the jury that they cannot find the defendant guilty unless the

evidence indicates guilt beyond a “reasonable doubt” which is usually defined in

criminal cases as 95% certainty of guilt. If the jury cannot accept the null, innocent,

then action will be taken, jail time. The burden of proof always lies with the

alternative hypothesis. (In civil cases, the jury needs only to be more than 50%

certain of wrongdoing to find culpability, called “a preponderance of the evidence”).

The example above was for a test of a mean, but the same logic applies to tests of

hypotheses for all statistical parameters one may wish to test.

Example: Suppose the null hypothesis, , is Frank’s rock climbing is safe.

Type I error: Frank thinks that his rock-climbing equipment may not be safe when,

in fact, it really is safe.

Type II error: Frank thinks that his rock-climbing equipment may be safe when, in

fact, it is not safe.

probability that Frank thinks his rock-climbing equipment may not be safe

when, in fact, it really is safe. probability that Frank thinks his rock-climbing

equipment may be safe when, in fact, it is not safe.
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Notice that, in this case, the error with the greater consequence is the Type II error.

(If Frank thinks his rock-climbing equipment is safe, he will go ahead and use it.)

This is a situation described as “accepting a false null”.

Hypothesis Testing: Type I and Type II Errors

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-13

Check Your Understanding: Hypothesis Testing: Type I and Type II Errors

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-47

Distribution Needed for Hypothesis Testing

Earlier, we discussed sampling distributions. Particular distributions are associated with

hypothesis testing. We will perform hypotheses tests of a population mean using a normal

distribution or a Student’s t-distribution. (Remember, use a Student’s t-distribution when

the population standard deviation is unknown and the sample size is small, where small is

considered to be less than 30 observations.) We perform tests of a population proportion

using a normal distribution when we can assume that the distribution is normally

distributed. We consider this to be true if the sample proportion, p’, times the sample size

is greater than 5 and times the sample size is also greater than 5. This is the same

rule of thumb we used when developing the formula for the confidence interval for a

population proportion.

Hypothesis Test for the Mean

Going back to the standardizing formula we can derive the test statistic for testing

hypotheses concerning means.

The standardizing formula cannot be solved as it is because we do not have , the
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population mean. However, if we substituted in the hypothesized value of the mean,

in the formula as above, we can compute a Z value. This is the test statistic for a test

of hypothesis for a mean and is presented in Figure 10. We interpret this Z value as the

associated probability that a sample with a sample mean of could have come from a

distribution with a population mean of and we call this Z value for “calculated.”

Figure 10 shows this process.

Figure 10

In Figure 10, two of the three possible outcomes are presented. and are in the

tails of the hypothesized distribution of . Notice that the horizontal axis in the top

panel is labeled s. This is the same theoretical distribution of , the sampling

distribution, that the Central Limit Theorem tells us is normally distributed. This is why

we can draw it with this shape. The horizontal axis of the bottom panel is labeled Z and is

the standard normal distribution. , called the critical values, are marked

on the bottom panel as the Z values associated with the probability the analyst has set

as the level of significance in test, . The probabilities in the tails of both panels are,

therefore, the same.

Notice that for each there is an associated , called the calculated Z, that comes

from solving the equation above. This calculated Z is nothing more than the number of

266 MAVS OPEN PRESS



standard deviations that the hypothesized mean is from the sample mean. If the sample

mean falls “too many” standard deviations from the hypothesized mean we conclude

that the sample mean could not have come from the distribution with the hypothesized

mean, given our pre-set required level of significance. It could have come from ,

but it is deemed just too unlikely. In Figure 10, both are in the tails of the

distribution. They are deemed “too far” from the hypothesized value of the mean given

the chosen level of alpha. If in fact this sample mean it did come from , but from in the

tail, we have made a Type I error: we have rejected a good null. Our only real comfort is

that we know the probability of making such an error, , and we can control the size of

.

Figure 11 shows the third possibility for the location of the sample mean, . Here the

sample mean is within the two critical values. That is, within the probability of

and we cannot reject the null hypothesis.

Figure 11

This gives us the decision rule for testing a hypothesis for a two-tailed test:
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Table 7

Decision rule: two-tail test

If : then DO NOT REJECT

If : then REJECT

This rule will always be the same no matter what hypothesis we are testing or what

formulas we are using to make the test. The only change will be change the to the

appropriate symbol for the test statistic for the parameter being tested. Stating the

decision rule another way: if the sample mean is unlikely to have come from the

distribution with the hypothesized mean we cannot accept the null hypothesis. Here we

define “unlikely” as having a probability less than alpha of occurring.

Hypothesis testing: Finding Critical Values

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-14

Normal Distribution: Finding Critical Values of Z

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-15

P-Value Approach

An alternative decision rule can be developed by calculating the probability that a sample

mean could be found that would give a test statistic larger than the test statistic found

from the current sample data assuming that the null hypothesis is true. Here the notion of

“likely” and “unlikely” is defined by the probability of drawing a sample with a mean from

a population with the hypothesized mean that is either larger or smaller than that found

in the sample data. Simply stated, the p-value approach compares the desired significance

level, to the p-value which is the probability of drawing a sample mean further from

the hypothesized value than the actual sample mean. A large p-value calculated from the

data indicates that we should not reject the null hypothesis. The smaller the p-value, the

more unlikely the outcome, and the stronger the evidence is against the null hypothesis.

We would reject the null hypothesis if the evidence is strongly against it. The relationship

between the decision rule of comparing the calculated test statistics, , and the Critical

Value, , and using the p-value can be seen in Figure 12.
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Figure 12

The calculated value of the test in this example and is marked on the bottom graph of

the standard normal distribution because it is a Z value. In this case the calculated value

is in the tail and thus we cannot accept the null hypothesis, the associated is just too

unusually large to believe that it came from the distribution with a mean of with a

significance level of .

If we use the p-value decision rule, we need one more step. We need to find in the

standard normal table the probability associated with the calculated test statistic, . We

then compare that to the associated with our selected level of confidence. In Figure 12

we see that the p-value is less than and therefore we cannot accept the null. We know

that the p-value is less than because the area under the p-value is smaller than . It

is important to note that two researchers drawing randomly from the same population

may find two different P-values from their samples. This occurs because the P-value is

calculated as the probability in the tail beyond the sample mean assuming that the null

hypothesis is correct. Because the sample means will in all likelihood be different this

will create two different P-values. Nevertheless, the conclusions as to the null hypothesis

should be different with only the level of probability of .

Here is a systematic way to make a decision of whether you cannot accept or cannot reject

a null hypothesis if using the p-value and a preset or preconceived α (the “significance

level”). A preset is the probability of a Type I error (rejecting the null hypothesis when

the null hypothesis is true). It may or may not be given to you at the beginning of the
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problem. In any case, the value of α is the decision of the analyst. When you make a

decision to reject or not reject , do as follows:

• If p-value, cannot accept . The results of the sample data are significant. There is

sufficient evidence to conclude that is an incorrect belief and that the alternative

hypothesis, , may be correct.

• If p-value, cannot reject . The results of the sample data are not significant. There is

not sufficient evidence to conclude that the alternative hypothesis, , may be correct. In

this case the status quo stands.

• When you “cannot reject ,” it does not mean that you should believe that is true. It

simply means that the sample data have failed to provide sufficient evidence to cast serious

doubt about the truthfulness of . Remember that the null is the status quo, and it takes

high probability to overthrow the status quo. This bias in favor of the null hypothesis is what

gives rise to the statement “tyranny of the status quo” when discussing hypothesis testing and

the scientific method.

Both decision rules will result in the same decision, and it is a matter of preference which

one is used.

What is a “P-Value?”

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-16

One and Two-Tailed Tests

The discussion with the figures above was based on the null and alternative hypothesis

presented in the first figure. This was called a two-tailed test because the alternative

hypothesis allowed that the mean could have come from a population which was either

larger or smaller than the hypothesized mean in the null hypothesis. This could be seen

by the statement of the alternative hypothesis as , in this example.

It may be that the analyst has no concern about the value being “too” high or “too” low

from the hypothesized value. If this is the case, it becomes a one-tailed test, and all of

the alpha probability is placed in just one tail and not split into as in the above

case of a two-tailed test. Any test of a claim will be a one-tailed test. For example, a car

manufacturer claims that their Model 17B provides gas mileage of greater than 25 miles

per gallon. The null and alternative hypothesis would be:
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The claim would be in the alternative hypothesis. The burden of proof in hypothesis

testing is carried in the alternative. This is because failing to reject the null, the status quo,

must be accomplished with 90 or 95 percent confidence that it cannot be maintained.

Said another way, we want to have only a 5 or 10 percent probability of making a Type I

error, rejecting a good null; overthrowing the status quo.

This is a one-tailed test, and all of the alpha probability is placed in just one tail and not

split into as in the above case of a two-tailed test.

Figure 13 shows two possible cases and the form of the null and alternative hypothesis

that give rise to them.

Figure 13

Where is the hypothesized value of the population mean.
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Table 8: Test Statistics for Test of Means,
Varying Sample Size, Population Standard

Deviation Known or Unknown

Sample size Test statistic

Effects of Sample Size on Test Statistic

In developing the confidence intervals for the mean from a sample, we found that most

often we would not have the population standard deviation, . If the sample size were

less than 30, we could simply substitute the point estimate for , the sample standard

deviation, s, and use the student’s t-distribution to correct for this lack of information.

When testing hypotheses, we are faced with this same problem and the solution is exactly

the same. Namely: If the population standard deviation is unknown, and the sample size

is less than 30, substitute s, the point estimate for the population standard deviation, , in

the formula for the test statistic and use the student’s t-distribution. All the formulas and

figures above are unchanged except for this substitution and changing the Z distribution

to the student’s t-distribution on the graph. Remember that the student’s t-distribution

can only be computed knowing the proper degrees of freedom for the problem. In

this case, the degrees of freedom is computed as before with confidence intervals:

. The calculated t-value is compared to the t-value associated with the pre-

set level of confidence required in the test, found in the student’s t tables. If we do

not know , but the sample size is 30 or more, we simply substitute s for and use the

normal distribution.

Table 8 summarizes these rules.

A Systematic Approach for Testing a Hypothesis

A systematic approach to hypothesis testing follows the following steps and in this order.

This template will work for all hypotheses that you will ever test.

• Set up the null and alternative hypothesis. This is typically the hardest part of the process.

Here the question being asked is reviewed. What parameter is being tested, a mean, a

proportion, differences in means, etc. Is this a one-tailed test or two-tailed test?
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• Decide the level of significance required for this particular case and determine the critical

value. These can be found in the appropriate statistical table. The levels of confidence typical

for businesses are 80, 90, 95, 98, and 99. However, the level of significance is a policy decision

and should be based upon the risk of making a Type I error, rejecting a good null. Consider the

consequences of making a Type I error.

Next, on the basis of the hypotheses and sample size, select the appropriate test statistic and

find the relevant critical value: , etc. Drawing the relevant probability distribution and

marking the critical value is always big help. Be sure to match the graph with the hypothesis,

especially if it is a one-tailed test.

• Take a sample(s) and calculate the relevant parameters: sample mean, standard deviation, or

proportion. Using the formula for the test statistic from above in step 2, now calculate the test

statistic for this particular case using the parameters you have just calculated.

• Compare the calculated test statistic and the critical value. Marking these on the graph will

give a good visual picture of the situation. There are now only two situations:

◦ The test statistic is in the tail: Cannot Accept the null, the probability that this sample

mean (proportion) came from the hypothesized distribution is too small to believe

that it is the real home of these sample data.

◦ The test statistic is not in the tail: Cannot Reject the null, the sample data are

compatible with the hypothesized population parameter.

• Reach a conclusion. It is best to articulate the conclusion two different ways. First a formal

statistical conclusion such as “With a 5 % level of significance we cannot accept the null

hypotheses that the population mean is equal to XX (units of measurement)”. The second

statement of the conclusion is less formal and states the action, or lack of action, required. If

the formal conclusion was that above, then the informal one might be, “The machine is broken,

and we need to shut it down and call for repairs.”

All hypotheses tested will go through this same process. The only changes are the relevant

formulas and those are determined by the hypothesis required to answer the original

question.

Hypothesis Testing: One Sample Z Test of the Mean (Critical Value Approach)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-17
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Hypothesis Testing: t Test for the Mean (Critical Value Approach)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-18

Hypothesis Testing: 1 Sample Z Test of the Mean (Confidence Interval Approach)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-19

Hypothesis Testing: 1 Sample Z Test for Mean (P-Value Approach)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-20

Hypothesis Test for Proportions

Just as there were confidence intervals for proportions, or more formally, the population

parameter p of the binomial distribution, there is the ability to test hypotheses concerning

p.

The population parameter for the binomial is p. The estimated value (point estimate) for

p is p’ where is the number of successes in the sample and n is the sample

size.

When you perform a hypothesis test of a population proportion p, you take a simple

random sample from the population. The conditions for a binomial distribution must

be met, which are: there are a certain number n of independent trials meaning random

sampling, the outcomes of any trial are binary, success or failure, and each trial has the

same probability of a success p. The shape of the binomial distribution needs to be similar

to the shape of the normal distribution. To ensure this, the quantities np’ and nq’ must

both be greater than five . In this case the binomial distribution

of a sample (estimated) proportion can be approximated by the normal distribution with

. Remember that . There is no distribution that can

correct for this small sample bias and thus if these conditions are not met, we simply
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cannot test the hypothesis with the data available at that time. We met this condition

when we first were estimating confidence intervals for p.

Again, we begin with the standardizing formula modified because this is the distribution

of a binomial.

Substituting , the hypothesized value of p, we have:

This is the test statistic for testing hypothesized values of p, where the null and alternative

hypotheses take one of the following forms:

Table 9

Two-tailed test One-tailed test One-tailed test

The decision rule stated above applies here also: if the calculated value of shows

that the sample proportion is “too many” standard deviations from the hypothesized

proportion, the null hypothesis cannot be accepted. The decision as to what is “too many”

is pre-determined by the analyst depending on the level of significance required in the

test.

Hypothesis Testing: 1 Proportion using the Critical Value Approach

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-21

HYPOTHESIS TESTING WITH TWO SAMPLES

Studies often compare two groups. For example, researchers are interested in the effect aspirin

has in preventing heart attacks. Over the last few years, newspapers and magazines have

reported various aspirin studies involving two groups. Typically, one group is given aspirin and

the other group is given a placebo. Then, the heart attack rate is studied over several years.

There are other situations that deal with the comparison of two groups. For example, studies

compare various diet and exercise programs. Politicians compare the proportion of individuals

from different income brackets who might vote for them. Students are interested in whether
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SAT or GRE preparatory courses really help raise their scores. Many business applications

require comparing two groups. It may be the investment returns of two different investment

strategies, or the differences in production efficiency of different management styles.

To compare two means or two proportions, you work with two groups. The groups are

classified either as independent or matched pairs. Independent groups consist of two samples

that are independent, that is, sample values selected from one population are not related in

any way to sample values selected from the other population. Matched pairs consist of two

samples that are dependent. The parameter tested using matched pairs is the population mean.

The parameters tested using independent groups are either population means or population

proportions of each group.

Comparing Two Independent Population Means

The comparison of two independent population means is very common and provides a

way to test the hypothesis that the two groups differ from each other. Is the night shift less

productive than the day shift, are the rates of return from fixed asset investments different

from those from common stock investments, and so on? An observed difference between

two sample means depends on both the means and the sample standard deviations. Very

different means can occur by chance if there is great variation among the individual

samples. The test statistic will have to account for this fact. The test comparing two

independent population means with unknown and possibly unequal population standard

deviations is called the Aspin-Welch t-test. The degrees of freedom formula we will see

later was developed by Aspin-Welch.

When we developed the hypothesis test for the mean and proportions, we began with the

Central Limit Theorem. We recognized that a sample mean came from a distribution of

sample means, and sample proportions came from the sampling distribution of sample

proportions. This made our sample parameters, the sample means and sample

proportions, into random variables. It was important for us to know the distribution that

these random variables came from. The Central Limit Theorem gave us the answer: the

normal distribution. Our Z and t statistics came from this theorem. This provided us with

the solution to our question of how to measure the probability that a sample mean came

from a distribution with a particular hypothesized value of the mean or proportion. In

both cases that was the question: what is the probability that the mean (or proportion)

from our sample data came from a population distribution with the hypothesized value

we are interested in?

Now we are interested in whether or not two samples have the same mean. Our question

has not changed: Do these two samples come from the same population distribution? We

recognize that we have two sample means, one from each set of data, and thus we have

two random variables coming from two unknown distributions. To solve the problem,

we create a new random variable, the difference between the sample means. This new

random variable also has a distribution and, again, the Central Limit Theorem tells us that

this new distribution is normally distributed, regardless of the underlying distributions

of the original data. A graph may help to understand this concept.
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Figure 14

Pictured in Figure 14 are two distributions of data, , with unknown means

and standard deviations. The second panel shows the sampling distribution of the newly

created random variable . This distribution is the theoretical distribution of

many samples means from population 1 minus sample means from population 2. The

Central Limit Theorem tells us that this theoretical sampling distribution of differences

in sample means is normally distributed, regardless of the distribution of the actual

population data shown in the top panel. Because the sampling distribution is normally

distributed, we can develop a standardizing formula and calculate probabilities from the

standard normal distribution in the bottom panel, the Z distribution.

The Central Limit Theorem, as before, provides us with the standard deviation of the

sampling distribution, and further, that the expected value of the mean of the distribution

of differences in sample means is equal to the differences in the population means.

Mathematically this can be stated:

Because we do not know the population standard deviations, we estimate them using the

two sample standard deviations from our independent samples. For the hypothesis test,
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we calculate the estimated standard deviation, or standard error, of the difference in

sample means, .

The standard error is:

We remember that substituting the sample variance for the population variance when

we did not have the population variance was the technique we used when building the

confidence interval and the test statistic for the test of hypothesis for a single mean back

in Confidence Intervals and Hypothesis Testing with One Sample. The test statistic (t-

score) is calculated as follows:

Where:

• , the sample standard deviations, are estimates of , respectively

• are the unknown population standard deviations

• are the sample means. are the unknown population means.

The number of degrees of freedom (df) requires a somewhat complicated calculation.

The df are not always a whole number. The test statistic above is approximated by the

Student’s t-distribution with df as follows:

When both sample sizes are 30 or larger, the Student’s t approximation is

very good. If each sample has more than 30 observations, then the degrees of freedom can

be calculation as .

The format of the sampling distribution, differences in sample means, specifies that the

format of the null and alternative hypothesis is:

Where is the hypothesized difference between the two means. If the question is simply
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“is there any difference between the means?” then and the null and alternative

hypotheses becomes:

An example of when might not be zero is when the comparison of the two groups

requires a specific difference for the decision to be meaningful. Imagine that you are

making a capital investment. You are considering changing from your current model

machine to another. You measure the productivity of your machines by the speed they

produce the product. It may be that a contender to replace the old model is faster in

terms of product throughout but is also more expensive. The second machine may also

have more maintenance costs, setup costs, etc. The null hypothesis would be set up so

that the new machine would have to be better than the old one by enough to cover these

extra costs in terms of speed and cost of production. This form of the null and alternative

hypothesis shows how valuable this particular hypothesis test can be. For most of our

work we will be testing simple hypotheses asking if there is any difference between the

two-distribution means.

Hypothesis Testing – Two Population Means

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-22

Two Population Means, One Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-23

Two Population Means, Two Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-24
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Check Your Understanding: Hypothesis Testing (Two Population Means)

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-48

Cohen’s Standards for Small, Medium, and Large Effect Sizes

Cohen’s d is a measure of “effect size” based on the differences between two means.

Cohen’s d, named for United States statistician Jacob Cohen, measures the relative

strength of the differences between the means of two populations based on sample

data. The calculated value of effect size is then compared to Cohen’s standards of small,

medium, and large effect sizes.

Table 10

Size of effect d

Small 0.2

Medium 0.5

Large 0.8

Cohen’s d is the measure of the difference between two means divided by the pooled

standard deviation:

It is important to note that Cohen’s d does not provide a level of confidence as to the

magnitude of the size of the effect comparable to the other tests of hypothesis we have

studied. The sizes of the effects are simply indicative.

Effect Size for a Significant Difference of Two Sample Means

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-25

Test for Differences in Means: Assuming Equal Population Variances

Typically, we can never expect to know any of the population parameters, mean,
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proportion, or standard deviation. When testing hypotheses concerning differences in

means we are faced with the difficulty of two unknown variances that play a critical

role in the test statistic. We have been substituting the sample variances just as we did

when testing hypotheses for a single mean. And as we did before, we used a Student’s

t to compensate for this lack of information on the population variance. There may be

situations, however, when we do not know the population variances, but we can assume

that the two populations have the same variance. If this is true, then the pooled sample

variance will be smaller than the individual sample variances. This will give more precise

estimates and reduce the probability of discarding a good null. The null and alternative

hypotheses remain the same, but the test statistic changes to:

Where is the pooled variance given by the formula:

Example: A drug trial is attempted using a real drug and a pill made of just sugar. 18

people are given the real drug in hopes of increasing the production of endorphins.

The increase in endorphins is found to be on average 8 micrograms per person, and

the sample standard deviation is 5.4 micrograms. 11 people are given the sugar pill,

and their average endorphin increase is 4 micrograms with a standard deviation of 2.4.

From previous research on endorphins, it is determined that it can be assumed that the

variances within the two samples can be assumed to be the same. Test at 5% to see if the

population mean for the real drug had a significantly greater impact on the endorphins

than the population mean with the sugar pill.

Solution:

First, we begin by designating one of the two groups Group 1 and the other Group 2. This

will be needed to keep track of the null and alternative hypotheses. Let us set Group 1 as

those who received the actual new medicine being tested and therefore Group 2 is those

who received the sugar pill. We can now set up the null and alternative hypothesis as:

This is set up as a one-tailed test with the claim in the alternative hypothesis that the

medicine will produce more endorphins than the sugar pill. We now calculate the test

statistic which requires us to calculate the pooled variance, using the formula above.
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, allows us to compare the test statistic and the critical value.

The test statistic is clearly in the tail, 2.31 is larger than the critical value of 1.703,

and therefore we cannot maintain the null hypothesis. Thus, we conclude that there is

significant evidence at the 95% level of confidence that the new medicine produces the

effect desired.

Two Population Means with Known Standard Deviations

Even though this situation is not likely (knowing the population standard deviations is

very unlikely), the following example illustrates hypothesis testing for independent means

with known population standard deviations. The sampling distribution for the difference

between the means is normal in accordance with the central limit theorem. The random

variable is . The normal distribution has the following format:

The standard deviation is:

The test statistic (z-score) is:

Two Population Means, One Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-26

Two Population Means, Two Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-27

Check Your Understanding: Two Population Means
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-49

Matched or Paired Samples

In most cases of economic or business data we have little or no control over the process

of how the data are gathered. In this sense the data are not the result of a planned

controlled experiment. In some cases, however, we can develop data that are part of

a controlled experiment. This situation occurs frequently in quality control situations.

Imagine that the production rates of two machines built to the same design, but at

different manufacturing plants, are being tested for differences in some production

metric such as speed of output or meeting some production specification such as strength

of the product. The test is the same in format to what we have been testing, but here

we can have matched pairs for which we can test if differences exist. Each observation

has its matched pair against which differences are calculated. First, the differences in the

metric to be tested between the two lists of observations must be calculated, and this

is typically labeled with the letter “d.” Then, the average of these matched differences,

is calculated as is its standard deviation, . We expect that the standard deviation

of the differences of the matched pairs will be smaller than unmatched pairs because

presumably fewer differences should exist because of the correlation between the two

groups.

When using a hypothesis test for matched or paired samples, the following characteristics

may be present:

1. Simple random sampling is used.

2. Sample sizes are often small.

3. Two measurements (samples) are drawn from the same pair of individuals or

objects.

4. Differences are calculated from the matched or paired samples.

5. The differences form the sample that is used for the hypothesis test.

6. Either the matched pairs have differences that come from a population that is

normal or the number of differences is sufficiently large so that distribution of

the sample mean of differences is approximately normal.

In a hypothesis test for matched or paired samples, subjects are matched in pairs and

differences are calculated. The differences are the data. The population mean for the

differences, , is then tested using a Student’s t-test for a single population mean with
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degrees of freedom, where n is the number of differences, that is, the number of

pairs not the number of observations.

The null and alternative hypotheses for this test are:

The test statistic is:

Two Population Means, One Tail Test, Matched Sample

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-28

Two Population Means, One Tail test, Matched Sample (Hypothesized Test Different from Zero)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-29

Matched Sample, Two Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-30

Check Your Understanding: Matched Sample, Two Tail Test
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-50

Comparing Two Independent Population Proportions

When conducting a hypothesis test that compares two independent population

proportions, the following characteristics should be present:

1. The two independent samples are random samples are independent.

2. The number of successes is at least five, and the number of failures is at least five,

for each of the samples.

3. Growing literature states that the population must be at least ten or even

perhaps 20 times the size of the sample. This keeps each population from being

over-sampled and causing biased results.

Comparing two proportions, like comparing two means, is common. If two estimated

proportions are different, it may be due to a difference in the populations or it may be

due to chance in the sampling. A hypothesis test can help determine if a difference in the

estimated proportions reflects a difference in the two population proportions.

Like the case of differences in sample means, we construct a sampling distribution for

differences in sample proportions: where are

the sample proportions for the two sets of data in question. are the number

of successes in each sample group respectively, and are the respective sample

sizes from the two groups. Again, we go the Central Limit Theorem to find the

distribution of this sampling distribution for the differences in sample proportions. And

again, we find that this sampling distribution, like the one’s past, are normally distributed

as proved by the Central Limit Theorem, as see in Figure 15.
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Figure 15

Generally, the null hypothesis allows for the test of a difference of a particular value, ,

just as we did for the case of difference in means.

Most common, however, is the test that the two proportions are the same. That is,

To conduct the test, we use a pooled proportion, .

The pooled proportion is calculated as follows:

The test statistic (z-score) is:
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Where is the hypothesized differences between the two proportions and is the

pooled variance from the formula above.

Two Population Proportions, One Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-31

Two Population Proportion, Two Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-32

Check Your Understanding: Comparing Two Independent Population Proportions

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-51

THE CHI-SQUARE DISTRIBUTION

Have you ever wondered if lottery winning numbers were evenly distributed or if some

numbers occurred with a greater frequency? How about if the types of movies people preferred

were different across different age groups? What about if a coffee machine was dispensing

approximately the same amount of coffee each time? You could answer these questions by

conducting a hypothesis test.

You will now study a new distribution, one that is used to determine the answers to such

questions. This distribution is called the chi-square distribution.
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In this section, you will learn the three major applications of the chi-square distribution:

1. The test of a single variance, which tests variability, such as in the coffee example

2. The goodness-of-fit test, which determines if data fit a particular distribution, such as

in the lottery example

3. the test of independence, which determines if events are independent, such as in the

movie example

Facts About the Chi-Square Distribution

The notation for the chi-square distribution is:

Where degrees of freedom which depends on how chi-square is being used. (If you

want to practice calculating chi-square probabilities then use . The degrees of

freedom for the three major uses are each calculated differently.)

For the distribution, the population mean is and the population standard

deviation is .

The random variable is shown as .

The random variable for a chi-square distribution with k degrees of freedom is the sum

of k independent, squared standard normal variables.

1. The curve is nonsymmetrical and skewed to the right.

2. There is a different chi-square curve for each df.

Figure 16

3. The test statistic for any test is always greater than or equal to zero.

4. When , the chi-square curve approximates the normal distribution. For
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the mean, and the standard deviation,

. Therefore, , approximately.

5. The mean, is located just to the right of the peak.

Test of a Single Variance

Thus far our interest has been exclusively on the population parameter or it is

counterpart in the binomial, p. Surely the mean of a population is the most critical piece

of information to have, but in some cases, we are interested in the variability of the

outcomes of some distribution. In almost all production processes quality is measured

not only by how closely the machine matches the target, but also the variability of the

process. If one were filling bags with potato chips not only would there be interest in

the average weight of the bag, but also how much variation there was in the weights.

No one wants to be assured that the average weight is accurate when their bag has no

chips. Electricity voltage may meet some average level, but great variability, spikes, can

cause serious damage to electrical machines, especially computers. I would not only like

to have a high mean grade in my classes, but also low variation about this mean. In

short, statistical tests concerning the variance of a distribution have great value and many

applications.

A test of a single variance assumes that the underlying distribution is normal. The

null and alternative hypotheses are stated in terms of the population variance. The test

statistic is:

Where:

• the total number of observations in the sample data

• sample variance

• hypothesized value of the population variance

•

•

You may think of s as the random variable in this test. The number of degrees of freedom

is . A test of a single variance may be right-tailed, left-tailed, or two-tailed.

The example below will show you how to set up the null and alternative hypotheses. The

null and alternative hypotheses contain statements about the population variance.

Example: Math instructors are not only interested in how their students do on exams,
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on average, but how the exam scores vary. To many instructors, the variance (or standard

deviation) may be more important than the average.

Suppose a math instructor believes that the standard deviation for his final exam is five

points. One of his best students thinks otherwise. The student claims that the standard

deviation is more than five points. If the student were to conduct a hypothesis test, what

would the null and alternative hypotheses be?

Solution: Even though we are given the population standard deviation, we can set up the

test using the population variance as follows:

Single Population Variances, One-Tail Test

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-33

Check Your Understanding: Test of a Single Variance

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-52

Goodness-Of-Fit Test

In this type of hypothesis test, you determine whether the data “fit” a particular

distribution or not. For example, you may suspect your unknown data fit a binomial

distribution. You use a chi-square test (meaning the distribution for the hypothesis test is

chi-square) to determine if there is a fit or not. The null and the alternative hypotheses

for this test may be written in sentences or may be stated as equations or inequalities.

The test statistic for a goodness-of -fit test is:
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Where:

• O = observed values (data)

• E = expected values (from theory)

• k = the number of different data cells or categories

The observed values are the data values, and the expected values are the values you

would expect to get it the null hypothesis were true. There are n terms of the form

.

The number of degrees of freedom is .

The goodness-of-fit test is almost always right-tailed. If the observed values and the

corresponding expected values are not close to each other, then the test statistic can get

very large and will be way out in the right tail of the chi-square curve.

Note: The number of expected values inside each cell needs to be at least five in order to

use this test.

Chi-Square Statistic for Hypothesis Testing

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-34

Chi-Square Goodness-of-Fit Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-35

Check Your Understanding: Goodness-of-Fit Test
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-53

Test of Independence

Tests of independence involve using a contingency table of observed (data) values.

The test statistic of a test of independence is similar to that of a goodness-of-fit test:

Where:

• O = observed values

• E = expected values

• i = the number of rows in the table

• j = the number of columns in the table

There are

A test of independence determines whether two factors are independent or not.

Note: The expected value inside each cell needs to be at least five in order for you to use

this test.

The test of independence is always right tailed because of the calculation of the test

statistic. If the expected and observed values are not close together, then the test statistic

is very large and way out in the right tail of the chi-square curve, as it is in a goodness-of-

fit.

The number of degrees of freedom for the test of independence is:

The following formula calculates the expected number (E):
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Simple Explanation of Chi-Squared

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-36

Chi-Square Tet for Association (independence)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-37

Check Your Understanding: Test of Independence

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-54

Test for Homogeneity

The goodness-of-fit test can be used to decide whether a population fits a given

distribution, but it will not suffice to decide whether two populations follow the same

unknown distribution. A different test, called the test of homogeneity, can be used

to draw a conclusion about whether two populations have the same distribution. To

calculate the test statistic for a test for homogeneity, follow the same procedure as with

the test of independence.

Note: The expected value inside each cell needs to be at least five in order for you to use

this test.

Hypotheses

: The distribution of the two populations is the same.
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The distributions of the two population are not the same.

Test Statistic

Use a test statistic. It is computed in the same way as the test for independence.

Degrees of Freedom (df)

Requirements

All values in the table must be greater than or equal to five

Common uses

Comparing two populations. For example: men vs. women, before vs. after, east vs. west.

The variable is categorical with more than two possible response values.

Introduction to the Chi-Square Test for Homogeneity

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-38

Check Your Understanding: Test for Homogeneity

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-55

Comparison of the Chi-Square Tests

Above the test statistic was used in three different circumstances. The following

bulleted list is a summary of which test is the appropriate one to use in different

circumstances.

Goodness-of-fit: Use the goodness-of-fit test to decide whether a population with an

unknown distribution “fits” a known distribution. In this case there will be a single

qualitative survey question or a single outcome of an experiment from a single
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population. Goodness-of-Fit is typically used to see if the population is uniform (all

outcomes occur with equal frequency), the population is normal, or the population is

the same as another population with a known distribution. The null and alternative

hypotheses are:

The population fits given distribution

The population does not fit the given distribution

Independence: Use the test for independence to decide whether two variables (factors)

are independent or dependent. In this case there will be two qualitative survey questions

or experiments and a contingency table will be constructed. The goal is to see if the

two variables are unrelated (independent) or related (dependent). The null and alternative

hypotheses are:

The two variables (factors) are independent

The two variables (factors) are dependent

Homogeneity: Use the test for homogeneity to decide if two populations with unknown

distributions have the same distribution as each other. In this case there will be a single

qualitative survey question or experiment given to two different populations. The null

and alternative hypotheses are:

The two populations follow the same distribution

: The two populations have different distributions

F DISTRIBUTION AND ONE-WAY ANOVA

Many statistical applications in psychology, social science, business administration, and the

natural sciences involve several groups. For example, an environmentalist is interested in

knowing if the average amount of pollution varies in several bodies of water. A sociologist is

interested in knowing if the amount of income a person earns varies according to his or her

upbringing. A consumer looking for a new car might compared the average gas mileage of

several models.

For hypothesis tests comparing averages among more than two groups, statisticians have

developed a method called “Analysis of Variance” (abbreviated ANOVA). In this chapter, you

will study the simplest form of ANOVA called single factor or one-way ANOVA. You will also

study the F distribution, used for one-way ANOVA, and the test for differences between two

variances. This is just a very brief overview of one-way ANOVA. One-Way ANOVA, as it is

presented here, relies heavily on a calculator or computer.

Test of Two Variances

This chapter introduces a new probability density function, the F distribution. This

distribution is used for many applications including ANOVA and for testing equality
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across multiple means. We begin with the F distribution and the test of hypothesis of

differences in variances. It is often desirable to compare two variances rather than two

averages. For instance, college administrators would like two college professors grading

exams to have the same variation in their grading. In order for a lid to fit a container, the

variation in the lid and the container should be approximately the same. A supermarket

might be interested in the variability of check-out times for two checkers. In finance,

the variance is a measure of risk and thus an interesting question would be to test the

hypothesis that two different investment portfolios have the same variance, the volatility.

In order to perform a F test of two variances, it is important that the following are true:

1. The populations from which the two samples are drawn are approximately

normally distributed.

2. The two populations are independent of each other.

Unlike most other hypothesis tests in this Module, the F test for equality of two variances

is very sensitive to deviations from normality. If the two distributions are not normal, or

close, the test can give a biased result for the test statistic.

Suppose we sample randomly from two independent normal populations. Let

be the unknown population variances and be the sample

variances. Let the sample sizes be . Since we are interested in comparing the

two sample variances, we use the F ratio:

F has the distribution

Where are the degrees of freedom for the numerator and are the degrees

of freedom for the denominator.

If the null hypothesis is , then the F Ratio, test statistic, becomes

The various forms of the hypotheses tested are:

Two-Tailed Test One-Tailed Test One-Tailed Test
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A more general form of the null and alternative hypothesis for a two tailed test would be:

Where if it is a simple test of the hypothesis that the two variances are equal.

This form of the hypothesis does have the benefit of allowing for tests that are more

than for simple differences and can accommodate tests for specific differences as we

did for differences in means and differences in proportions. This form of the hypothesis

also shows the relationship between the F distribution and the : the F is a ratio of

two chi squared distributions a distribution we saw in the last chapter. This is helpful in

determining the degrees of freedom of the resultant F distribution.

If the two populations have equal variances, then are close in value and the test

statistic, is close to one. But if the two population variances are very different,

tend to be very different, too. Choosing as the larger sample variance causes

the ratio to be greater than one. If are far apart, then is a large

number.

Therefore, if F is close to one, the evidence favors the null hypothesis (the two population

variances are equal). But if F is much larger than one, then the evidence is against the

null hypothesis. In essence, we are asking if the calculated F statistic, test statistic, is

significantly different from one.

To determine the critical points, we have to find . (link for F table). This F table

has values for various levels of significance from 0.1 to 0.001 designated as “p” in the first

column. To find the critical value choose the desired significance level and follow down

and across to find the critical value at the intersection of the two different degrees of

freedom. The F distribution has two different degrees of freedom, one associated with

the numerator, , and one associated with the denominator, and to complicate

matters, the F distribution is not symmetrical and changes the degree of skewness as

the degrees of freedom of change. The degrees of freedom in the numerator is

is the sample size for group 1, and the degrees of freedom in the

denominator is , where is the sample size for group 2. will give the

critical value on the upper end of the F distribution.

To find the critical value for the lower end of the distribution, reverse the degrees of

freedom and divide the F-value from the table into one.
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• Upper tail critical value:

• Lower tail critical value:

When the calculated value of F is between the critical values, not in the tail, we cannot

reject the null hypothesis that the two variances came from a population with the same

variance. If the calculated F-value is in either tail we cannot accept the null hypothesis

just as we have been doing for all of the previous tests of hypothesis.

An alternative way of finding the critical values of the F distribution makes the use of the

F-table easier. We note in the F-table that all the values of F are greater than one therefore

the critical F value for the left-hand tail will always be less than one because to find the

critical value on the left tail we divide an F value into the number one as shown above.

We also note that if the sample variance in the numerator of the test statistic is larger than

the sample variance in the denominator, the resulting F value will be greater than one.

The shorthand method for this test is thus to be sure that the larger of the two sample

variances is placed in the numerator to calculate the test statistic. This will mean that only

the right-hand tail critical value will have to be found in the F-table.

Hypothesis Test Two Population Variances

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-39

Check Your Understanding: F Distribution

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-56

One-Way ANOVA

The purpose of a one-way ANOVA test is to determine the existence of a statistically
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significant difference among several group means. The test actually uses variances to

help determine if the means are equal or not. In order to perform a one-way ANOVA test,

there are five basic assumptions to be fulfilled:

1. Each population from which a sample is taken is assumed to be normal.

2. All samples are randomly selected and independent.

3. The populations are assumed to have equal standard deviations (or variances).

4. The factor is a categorical variable.

5. The response is a numerical variable.

The Null and Alternative Hypotheses

The null hypothesis is simply that all the group population means are the same. The

alternative hypothesis is that at least one pair of means is different. For example, if there

are k groups:

At least two of the group means are not equal. That is,

.

The graphs, a set of box plots representing the distribution of values with the group

means indicated by a horizontal line through the box, help in the understanding of the

hypothesis test. In the first graph (red box plots), and the three

populations have the same distribution if the null hypothesis is true. The variance of the

combined data is approximately the same as the variance of the populations.

If the null hypothesis is false, then the variance of the combined data is larger which is

caused by the different means as shown in the second graph (green box plots).
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Figure 17: (a) is true. All means are the same; the
differences are due to random variation. (b) is not
true. All means are not the same; the differences are
too large to be due to random variation.

ANOVA

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-40

The F Distribution and the F-Ratio

The distribution used for the hypothesis test is a new one. It is called the F distribution,

invented by George Snedecor but named in honor of Sir Ronald Fisher, an English

statistician. The F statistic is a ratio (a fraction). There are two sets of degrees of freedom:

one for the numerator and one for the denominator.

For example, if F follows an F distribution and the number of degrees of freedom for the

numerator is four, and the number of degrees of freedom for the denominator is ten, then

.

To calculate the F ratio, two estimates of the variance are made.

1. Variance between samples: An estimate of that is the variance of the sample

means multiplied by n (when the sample sizes are the same). If the samples are

different sizes, the variances between samples is weighted to account for the

different sample sizes. The variances is also called variance due to treatment or

explained variation.
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2. Variance within samples: An estimate of that is the average of the sample

variances (also known as a pooled variance). When the sample sizes are different,

the variance within samples is weighted. The variance is also called the variation

due to error or unexplained variation.

• the sum of squares that represents the variation among the different

samples

• the sum of squares that represents the variation within samples that is due to

chance.

To find a “sum of squares” means to add together squared quantities that, in some cases,

may be weighted.

MS means “mean square.” is the variance between groups, and is

the variance within groups.

Calculation of Sum of Squares and Mean Square

• k = the number of different groups

• group

• group

• n = total number of all the values combined (total sample size: )

• x = one value:

• Sum of squares of all values from every group combined:

• Between group variability:

• Total sum of squares:

• Explains variation: sum of squares representing variation among the different samples:

• Unexplained variation: sum of squares represent variation within samples due to change:

• d f’s for different groups (d f’s for the numerator):

• Equation for errors within samples (d f’s for the denominator):
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• Mean square (variance estimate) explained by the different groups:

• Mean square (variance estimate) that is due to chance (unexplained):

can be written as follows:

•

•

The one-way ANOVA test depends on the fact that can be influenced by

population differences among means of the several groups. Since compares

values of each group to its own group mean, the fact that group means might be different

does not affect .

The null hypothesis says that all groups are samples from populations
having the same normal distribution. The alternate hypothesis says
that at least two of the sample groups come from populations with
different normal distributions. If the null hypothesis is true,
and should both estimate the same value.

Note: The null hypothesis says that all the group population means are equal. The

hypothesis of equal means implies that the populations have the same normal

distribution, because it is assumed that the populations are normal and that they have

equal variances.

F-Ration or F Statistic

If estimate the same value (following the belief that is

true), then the F-ratio should be approximately equal to one. Mostly, just sampling errors

would contribute to variations away from one. As it turns out, consists of the

population variance plus a variance produced form the differences between the samples.

is an estimate of the population variance. Since variances are always positive, if
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the null hypothesis is false, will generally be larger than . Then the

F-ratio will be larger than one. However, if the population effect is small, it is not unlikely

that will be larger in a given sample.

The foregoing calculations were done with groups of different sizes. If the groups are the

same size, the calculations simplify somewhat, and the F-ratio can be written as:

F-Ratio Formula when the groups are the same size

Where:

• n = the sample size

•

•

• the mean of the sample variances (pooled variance)

• the variance of the sample means.

Data are typically put into a table for easy viewing. One-Way ANOVA results are often

displayed is this manner by computer software.

Table 12

Source of variation Sum of squares (SS) Degrees of freedom
(df) Mean square (MS) F

Factor (Between) SS(Factor) k – 1
MS(Factor) = F =

Error (Within) SS(Error) n – k
MS(Error) =

Total SS(Total) n – 1

Example: Three different diet plans are to be tested for mean weight loss. The entries in

the table are the weight losses for the different plans. The one-way ANOVA results are

shown in Table 13.

Table 13

Plan 1: Plan 2: Plan 3:

5 3.5 8

4.5 7 4

4 3.5

3 4.5
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Following are the calculations needed to fill in the one-way ANOVA table. The table is

used to conduct a hypothesis test.

Where

Table 14

Source of variation Sum of squares (SS) Degrees of freedom (df) Mean square (MS) F

Factor
(Between)

SS(Factor)
=SS(Between)

= 2.2458

k – 1
= 3 groups – 1

= 2

MS(Factor)
= SS(Factor)/(k – 1)

= 2.2458/2

= 1.1229

F =
MS(Factor)/MS(Error)

= 1.1229/2.9792

= 0.3769

Error
(Within)

SS(Error)
= SS(Within)

= 20.8542

n – k
= 10 total data

– 3 groups

= 7

MS (Error)
= SS(Error)/(n – k)

= 20.8542/7

= 2.9792

Total

SS(Total)
= 2.2458 + 20.8542

= 23.1

n – 1
= 10 total data

– 1

= 9
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The one-way ANOVA hypothesis test is always right-tailed because larger F-values are

way out in the right tail of the F-distribution and tend to make us reject .

Notation

The notation for the F distribution is

Where

The mean for the F distribution is

Calculating SST (total sum of squares)

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-41

Calculating

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-42

Hypothesis Test with F-Statistic

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-43

Check Your Understanding: The F Distribution and the F-Ratio
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-57

Facts About the F Distribution

1. The curve is not symmetrical but skewed to the right.

2. There is a different curve for each set of degrees of freedom.

3. The F statistic is greater than or equal to zero.

4. As the degrees of freedom for the numerator and for the denominator get larger,

the curve approximates the normal as can be seen in Figure 18. Remember that

the F cannot ever be less than zero, so the distribution does not have a tail that

goes to infinity on the left as the normal distribution does.

5. Other uses for the F distribution include comparing two variances and two-way

Analysis of Variances. Two-Way Analysis is beyond the scope of this section.

Figure 18

COMPUTE AND INTERPRET SIMPLE LINEAR REGRESSION BETWEEN TWO

VARIABLES

LINEAR REGRESSION AND CORRELATION

Professionals often want to know how two or more numeric variables are related. For example,

is there a relationship between the grade on the second math exam a student takes and the grade

on the final exam? If there is a relationship, what is the relationship and how strong is it?
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This example may or may not be tied to a model, meaning that some theory suggested that a

relationship exists. This link between a cause and an effect is the foundation of the scientific

method and is the core of how we determine what we believe about how the world works.

Beginning with a theory and developing a model of the theoretical relationship should result in

a prediction, what we have called a hypothesis earlier. Now the hypothesis concerns a full set of

relationships.

The foundation of all model building is perhaps the arrogant statement that we know what

caused the result we see. This is embodied in the simple mathematical statement of the

functional form that . The response, Y, is caused by the stimulus, X. Every model will

eventually come to this final place, and it will be here that the theory will live or die. Will the

data support this hypothesis? If so, then fine, we shall believe this version of the world until

a better theory comes to replace it. This is the process by which we moved from flat earth to

round earth, from earth-center solar system to sun-center solar system, and on and on.

In this section we will begin with correlation, the investigation of relationships among variables

that may or may not be founded on a cause-and-effect model. The variables simply move in the

same, or opposite, direction. That is to say, they do not move randomly. Correlation provides

a measure of the degree to which this is true. From there we develop a tool to measure cause

and effect relationships, regression analysis. We will be able to formulate models and tests to

determine if they are statistically sound. If they are found to be so, then we can use them to make

predictions: if as a matter of policy, we changed the value of this variable what would happen to

this other variable? If we imposed a gasoline tax of 50 cents per gallon how would that effect the

carbon emissions, sales of Hummers/Hybrids, use of mass transit, etc.? The ability to provide

answers to these types of questions is the value of regression as both a tool to help us understand

our world and to make thoughtful policy decisions.

THE CORRELATION COEFFICIENT R

As we begin this section, we note that the type of data we will be working with has changed.

Perhaps unnoticed, all the data we have been using is for a single variable. It may be from two

samples, but it is still a univariate variable. The type of data described for any model of cause

and effect is bivariate data — “bi” for two variables. In reality, statisticians use multivariate

data, meaning many variables.

Data can be classified into three broad categories: time series data, cross-section data, and panel

data. Time series data measures a single unit of observation; say a person, or a company or a

country, as time passes. What are measures will be at least two characteristics, say the person’s

income, the quantity of a particular good they buy and the price they paid. This would be three

pieces of information in one time period, say 1985. If we followed that person across time we

would have those same pieces of information for 1985, 1986, 1987, etc. This would constitute a

time series data set.

A second type of data set is for cross-section data. Here the variation is not across time for

a single unit of observation, but across units of observation during one point in time. For a
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particular period of time, we would gather the price paid, amount purchased, and income of

many individual people.

A third type of data set is panel data. Here a panel of units of observation is followed across

time. If we take our example from above, we might follow 500 people, the unit of observation,

through time, ten years, and observe their income, price paid and quantity of the good

purchased. If we had 500 people and data for ten years for price, income and quantity purchased

we would have 15,000 pieces of information. These types of data sets are very expensive to

construct and maintain. They do, however, provide a tremendous amount of information that

can be used to answer very important questions. As an example, what is the effect on the labor

force participation rate of women as their family of origin, mother and father, age? Or are

there differential effects on health outcomes depending upon the age at which a person started

smoking? Only panel data can give answers to these and related questions because we must

follow multiple people across time.

Beginning with a set of data with two independent variables we ask the question: are these

related? One way to visually answer this question is to create a scatter plot of the data. We could

not do that before when we were doing descriptive statistics because those data were univariate.

Now we have bivariate data so we can plot in two dimensions. Three dimensions are possible

on a flat piece of paper but become very hard to fully conceptualize. Of course, more than three

dimensions cannot be graphed although the relationships can be measured mathematically.

To provide mathematical precision to the measurement of what we see we use the correlation

coefficient. The correlation tells us something about the co-movement of two variables, but

nothing about why this movement occurred. Formally, correlation analysis assumes that both

variables being analyzed are independent variables. This means that neither one causes the

movement in the other. Further, it means that neither variable is dependent on the other, or for

that matter, on any other variable. Even with these limitations, correlation analysis can yield

some interesting results.

The correlation coefficient, (pronounced rho), is the mathematical statistic for a population

that provides us with a measurement of the strength of a linear relationship between the two

variables. For a sample of data, the statistic, r, developed by Karl Pearson in the early 1900s, is

an estimate of the population correlation and is defined mathematically as:

OR

Where are the standard deviations of the two independent variables

are the sample means of the two variables, and are

the individual observations of . The correlation coefficient r ranges in value from

-1 to 1. The second equivalent formula is often used because it may be computationally easier.
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As scary as these formulas look, they are really just the ratio of the covariance between the two

variables and the product of their two standard deviations. That is to say, it is a measure of

relative variances.

In practice all correlation and regression analysis will be provided through computer software

designed for these purposes. Anything more than perhaps one-half a dozen observations creates

immense computational problems. It was because of this fact that correlation, and even more so,

regression, were not widely used research tools until after the advent of “computing machines.”

Now the computing power required to analyze data using regression packages is deemed

almost trivial by comparison to just a decade ago.

To visualize any linear relationship that may exist review the plot of a scatter diagrams of the

standardized data. Figure 19 presents several scatter diagrams and the calculated value of r. In

panels (a) and (b) notice that the data generally trend together, (a) upward and (b) downward.

Panel (a) is an example of a positive correlation and panel (b) is an example of a negative

correlation, or relationship. The sign of the correlation coefficient tells us if the relationship is

a positive or negative (inverse) one. If all the values of are on a straight line the

correlation coefficient will be either depending on whether the line has a positive

or negative slope and the closer to one or negative one the stronger the relationship between

the two variables. BUT ALWAYS REMEMBER THAT THE CORRELATION COEFFICIENT

DOES NOT TELL US THE SLOPE.

Figure 19

Remember, all the correlation coefficient tells us is whether or not the data are linearly related.

In panel (d) the variables obviously have some type of very specific relationship to each other,

but the correlation coefficient is zero, indicating no linear relationship exists.
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If you suspect a linear relationship between can measure how strong the

linear relationship is.

What the VALUE of r tells us:

• The value of r is always between .

• The size of the correlation r indicates that strength of the linear relationship between

. Values of r close to indicate a stronger linear relationship

between .

• If there is absolutely no linear relationship between (no linear

correlation).

• If , there is perfect positive correlation. If there is perfect negative

correlation. In both these cases, all of the original data points lie on a straight line: ANY

straight line no matter what the slope. Of course, in the real world, this will not generally

happen.

What the SIGN of r tells us

• A positive value of r means that when tends to increase and when

tend to decrease (positive correlation).

• A negative value of r means that when tends to decrease and when

tends to increase (negative correlation).

Note: Strong correlation does not suggest that We say,

“correlation does not imply causation.”

Bivariate Relationship Linearity, Strength, and Direction

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-44

Check Your Understanding: The Correlation Coefficient r
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-58

Calculating Correlation Coefficient r

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-45

Example: Correlation Coefficient Intuition

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-46

LINEAR EQUATIONS

Linear regression to two variables is based on a linear equation with one independent variable.

The equation has the form:

Where a and b are constant numbers.

The variable x is the independent variable, and y is the dependent variable. Another way to

think about this equation is a statement of cause and effect. The X variable is the cause, and

the Y variable is the hypothesized effect. Typically, you choose a value to substitute for the

independent variable and then solve for the dependent variable.

The graph of a linear equation of the form is a straight line. Any line that is not

vertical can be described by this equation.

Slope and Y-Intercept of a Linear Equation

For the linear equation , b = slope and a = y-intercept. From algebra recall that the

slop is a number that described the steepness of a line, and the y-intercept is the y coordinate of
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the point where the line crosses the y-axis. From calculus the slope is the first derivative

of the function. For a linear function, the slope is where we can read the mathematical

expression as “the change in that results from a change in

Figure 20: Three possible graphs of . (a) if b > 0, the line slopes upward to the right.
(b) if b=0, the line is horizontal. (c) if b < 0, the line slopes downward to the right.

THE REGRESSION EQUATION

Regression analysis is a statistical technique that can test the hypothesis that a variable is

dependent upon one or more other variables. Further, regression analysis can provide an

estimate of the magnitude of the impact of a change in one variable on another. This last feature,

of course, is all important in predicting future values.

Regression analysis is based upon a functional relationship among variables and further,

assumes that the relationship is linear. This linearity assumption is required because, for the

most part, the theoretical statistical properties of non-linear estimation are not well worked

out yet by the mathematicians and econometricians. This presents us with some difficulties in

economic analysis because many of our theoretical models are nonlinear. The marginal cost

curve, for example, is decidedly nonlinear as is the total cost function, if we are to believe

in the effect of specialization of labor and the Law of Diminishing Marginal Product. There

are techniques for overcoming some of these difficulties, exponential and logarithmic

transformation of the data for example, but at the outset we must recognize that standard

ordinary least squares (OLS) regression analysis will always use a linear function to estimate

what might be a nonlinear relationship.

The general linear regression model can be stated by the equation:

Where is the intercept, are the slope between Y and the appropriate

(pronounced epsilon), is the error term that captures errors in measurement of Y and the effect

on Y of any variables missing from the equation that would contribute to explaining variations

in Y. This equation is the theoretical population equation and therefore uses Greek letters. The

equation we will estimate will have the Roman equivalent symbols. This is parallel to how we

kept track of the population parameters and sample parameters before. The symbol for the

population mean was and for the sample mean and for the population standard deviation

was and for the sample standard deviation was s. The equation that will be estimated with a

sample of data for two independent variables will thus be:

312 MAVS OPEN PRESS



As with our earlier work with probability distributions, this model works only if certain

assumptions hold. These are that the Y is normally distributed, the errors are also normally

distributed with a mean of zero and a constant standard deviation, and that the error terms are

independent of the size of X and independent of each other.

Assumptions of the Ordinary Least Squares Regression Model

Each of these assumptions needs a bit more explanation. If one of these assumptions fails to

be true, then it will have an effect on the quality of the estimates. Some of the failures of these

assumptions can be fixed while others result in estimates that quite simply provide no insight

into the questions the model is trying to answer or worse, give biased estimates.

1. The independent variables, , are all measured without error, and are fixed numbers

that are independent of the error term. This assumption is saying in effect that Y is

deterministic, the result of a fixed component “X” and a random error component “ .”

2. The error term is a random variable with a mean of zero and a constant variance. The

meaning of this is that the variances of the independent variables are independent of

the value of the variable. Consider the relationship between personal income and the

quantity of a good purchased as an example of a case where the variance is dependent

upon the value of the independent variable, income. It is plausible that as income

increases the variation around the amount purchased will also increase simply because

of the flexibility provided with higher levels of income. The assumption is for constant

variance with respect to the magnitude of the independent variable called

homoscedasticity. If the assumption fails, then it is called heteroscedasticity. Figure 21

shows the case of homoscedasticity where all three distributions have the same

variance around the predicted value of Y regardless of the magnitude of X.

3. Error terms should be normally distributed. This can be seen in Figure 21 by the shape

of the distributions placed on the predicted line at the expected value of the relevant

value of Y.

4. The independent variables are independent of Y but are also assumed to be

independent of the other X variables. The model is designed to estimate the effects of

independent variables on some dependent variable in accordance with a proposed

theory. The case where some or more of the independent variables are correlated is not

unusual. There may be no cause and effect relationship among the independent

variables, but nevertheless they move together. Take the case of a simple supply curve

where quantity supplied is theoretically related to the price of the product and the

prices of inputs. There may be multiple inputs that may over time move together from

general inflationary pressure. The input prices will therefore violate this assumption of

regression analysis. This condition is called multicollinearity.

5. The error terms are uncorrelated with each other. This situation arises from an effect

on one error term from another error term. While not exclusively a time series

problem, it is here that we most often see this case. An X variable in time period one
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has an effect on the Y variable, but this effect then has an effect in the next time period.

This effect gives rise to a relationship among the error terms. This case is called

autocorrelation, “self-correlated.” The error terms are now not independent of each

other, but rather have their own effect on subsequent error terms.

Figure 21 shows the case where the assumptions of the regression model are being satisfied. The

estimated line is . Three values of X are shown. A normal distribution is placed at

each point where X equals the estimated line and the associated error at each value of Y. Notice

that the three distributions are normally distributed around the point on the line, and further,

the variation, variance, around the predicted value is constant indicating homoscedasticity from

assumption 2. Figure 21 does not show all the assumptions of the regression model, but it helps

visualize these important ones.

Figure 21
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Figure 22

This is the general form that is most often called the multiple regression model. So-called

“simple” regression analysis has only one independent (right-hand) variable rather than many

independent variables. Simple regression is just a special case of multiple regression. There

is some value in beginning with simple regression: it is easy to graph in two dimensions,

difficult to graph in three dimensions, and impossible to graph in more than three dimensions.

Consequently, our graphs will be for the simple regression case. Figure 22 presents the

regression problem in the form of a scatter plot graph of the data set where it is hypothesized

that Y is dependent upon the single independent variable X.

The regression problem comes down to determining which straight line would best represent

the data in Figure 23. Regression analysis is sometimes called “least squares” analysis because

the method of determining which line best “fits” the data is to minimize the sum of the squared

residuals of a line put through the data.
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Figure 23: Population Equation:
Estimated Equation:

Figure 23 shows the assumed relationship between consumption and income from

macroeconomic theory. Here the data are plotted as a scatter plot and an estimated straight

line has been drawn. From this graph we can see an error term, . Each data point also has an

error term. Again, the error term is put into the equation to capture effects on consumption that

are not caused by income changes. Such other effects might be a person’s savings or wealth, or

periods of unemployment. We will see how by minimizing the sum of these errors we can get

an estimate for the slope and intercept of this line.

Consider the graph in Figure 24. The notation has returned to that for the more general model

rather than the specific case of the Macroeconomic consumption function in our example.
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Figure 24

The is read “y hat” and is the estimated value of y. (In Figure 23 represents the estimated

value of consumption because it is on the estimated line.) It is the value of y obtained using the

regression line. is not generally equal to y from the data.

The term is called the “error” or residual. It is not an error in the sense of a

mistake. The error term was put into the estimating equation to capture missing variables and

error in measurement that may have occurred in the dependent variables. The absolute value

of a residual measure the vertical distance between the actual value of y and the estimated value

of y. In other words, it measures the vertical distance between the actual data point and the

predicted point on the line as can be seen on the graph at point .

If the observed data point lies above the line, the residual is positive, and the line underestimates

the actual data value for y.

If the observed data point lies below the line, the residual is negative, and the line overestimates

that actual data value for y.

In the graph, is the residual for the point shown. Here the point lies above the

line, and the residual is positive. For each data point the residuals, or errors, are calculated

where n is the sample size. Each is a vertical distance.

The sum of the errors squared is the term obviously called Sum of Squared Errors (SSE).

Using calculus, you can determine the straight line that has the parameter values of
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that minimizes the SSE. When you make the SSE a minimum, you have determined the points

that are on the line of best fit. It turns out that the line of best fit has the equation:

The sample means of the x values and the y values are , respectively. The best fit line

always passes through the point called the points of means.

The slope b can also be written as:

Where the standard deviation of the y values and the standard deviation of the x

values and r is the correlation coefficient between x and y.

These equations are called the Normal Equations and come from another very important

mathematical finding called the Gauss-Markov Theorem without which we could not do

regression analysis. The Gauss-Markov Theorem tells us that the estimates we get from using

the ordinary least squares (OLS) regression method will result in estimates that have some very

important properties. In the Gauss-Markov Theorem it was proved that a least squares line

is BLUE, which is, Best, Linear, Unbiased, Estimator. Best is the statistical property that an

estimator is the one with the minimum variance. Linear refers to the property of the type of

line being estimated. An unbiased estimator is one whose estimating function has an expected

mean equal to the mean of the population. (You will remember that the expected value

was equal to the population mean in accordance with the Central Limit Theorem. This is

exactly the same concept here).

Using the OLS method, we can now find the estimate of the error variance, which is the

variance of the squared errors, . This is sometimes called the standard error of the estimate.

(Grammatically this is probably best said as the estimate of the error’s variance). The formula

for the estimate of the error variance is:

Where is the predicted value of y and y is the observed value, and thus the term

is the squared errors that are to be minimized to find the estimates of the regression line

parameters. This is really just the variance of the error terms and follows our regular variance

formula. One important note is that here we are dividing by , which is the degrees of

freedom. The degrees of freedom of a regression equation will be the number of observations,

n, reduced b the number of estimated parameters, which includes the intercept as a parameter.

The variance of the errors is fundamental in testing hypotheses for a regression. It tells us just

how “tight” the dispersion is about the line. As we will see shortly, the greater the dispersion

about the line, meaning the larger the variance of the errors, the less probable that the
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hypothesized independent variable will be found to have a significant effect on the dependent

variable. In short, the theory being tested will more likely fail if the variance of the error term

is high. Upon reflection this should not be a surprise. As we tested hypotheses about a mean we

observed that large variances reduced the calculated test statistic and thus it failed to reach the

tail of the distribution. In those cases, the null hypotheses could not be rejected. If we cannot

reject the null hypothesis in a regression problem, we must conclude that the hypothesized

independent variable has no effect on the dependent variable.

A way to visualize this concept is to draw two scatter plots of x and y data along a

predetermined line. The first will have little variance of the errors, meaning that all the data

points will move close to the line. Now do the same except the data points will have a large

estimate of the error variance, meaning that the data points are scattered widely along the

line. Clearly the confidence about a relationship between x and y is affected by this difference

between the estimate of the error variance.

Introduction to Residuals and Least-Squares Regression

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-47

Calculating Residual Example

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-48

Check Your Understanding: Linear Equations

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-59

OERTRANSPORT: FUNDAMENTALS OF MATH, PHYSICS, AND STATISTICS FOR FUTURE TRANSPORTATION PROFESSIONALS 319



Residual Plots

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-49

Check Your Understanding: Residual Plots

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-175

Calculating the Equation of a Regression Line

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-50

Check Your Understanding: Calculating the Equation of a Regression Line

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-61
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Interpreting Slope of Regression Line

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-51

Interpreting y-intercept in Regression Model

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-52

Check Your Understanding: Interpreting Slope of Regression Line and Interpreting y-
intercept in Regression Model

An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-62

Using Least Squares Regression Output

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-53

Check Your Understanding: Using Least Squares Regression Output
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An interactive H5P element has been excluded from this version of the text. You can view it online here:

https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#h5p-63

How Good is the Equation?

The multiple correlation coefficient, also called the coefficient of multiple

determination or the coefficient of determination, is given by the formula:

Where SSR is the regression sum of squares, the squared deviation of the predicted value

of y from the mean value of y and SST is the total sum of squares which is the

total squared deviation of the dependent variable, y, from its mean value, including the

error term, SSE, the sum of squared errors. Figure 25 shows how the total deviation of

the dependent variable, y, is partitioned into these two pieces.

Figure 25

Figure 25 shows the estimated regression line and a single observation, . Regression

analysis tries to explain the variation of the data about the mean value of the dependent

variable, y. The question is, why do the observations of y vary from the average level of y?
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The value of y at observation varies from the mean of y by the difference

.). The sum of these differences squared is SST, the sum of squares total. The actual value

of y at deviates from the estimated value, , by the difference between the estimate

value and the actual value, . We recall that this is the error term, e, and the sum

of these errors is SSE, sum of squared errors. The deviation of the predicted value of y, ,

from the mean value of y is and is the SSR, sum of squares regression. It is called

“regression” because it is the deviation explained by the regression. (Sometimes the SSR

is called SSM for sum of squares mean because it measures the deviation from the mean

value of the dependent variable, y, as shown on the graph.).

Because the SST = SSR + SSE we see that the multiple correlation coefficient is the

percent of the variance, or deviation in y from its mean value, that is explained by the

equation when taken as a whole. will vary between zero and 1, with zero indicating

that none of the variation in y was explained by the equation and a value of 1 indicating

that 100% of the variation in y was explained by the equation. For time series studies

expect a high and for cross-section data expect low .

While a high is desirable, remember that it is the tests of the hypothesis concerning

the existence of a relationship between a set of independent variables and a particular

dependent variable that was the motivating factor in using the regression model. It is

validating a cause-and-effect relationship developed by some theory that is the true

reason that we chose the regression analysis. Increasing the number of independent

variables will have the effect of increasing . To account for this effect the proper

measure of the coefficient of determination is , adjusted for degrees of freedom, to

keep down mindless addition of independent variables.

There is no statistical test for the and thus little can be said about the model using

with our characteristic confidence level. Two models that have the same size of SSE,

that is sum of squared errors, may have very different if the competing models have

different SST, total sum of squared deviations. The goodness of fit of the two models

is the same; they both have the same sum of squares unexplained, errors squared, but

because of the larger total sum of squares on one of the models the differs. Again, the

real value of regression as a tool is to examine hypotheses developed from a model that

predicts certain relationships among the variables. These are tests of hypotheses on the

coefficients of the model and not a game of maximizing .

R-Squared or Coefficient of Determination

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-54
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DATA ANALYSIS TOOLS (SPREADSHEETS AND BASIC PROGRAMMING)

DESCRIPTIVE STATISTICS

Using Microsoft Excel’s “Descriptive Statistics” Tool

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-55

How to Run Descriptive Statistics in R

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-56

Descriptive Statistics in R Part 2

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-57

REGRESSION ANALYSIS

How to Use Microsoft Excel for Regression Analysis

Please read this text on how to use Microsoft Excel for regression analysis.

Simple Linear Regression in Excel

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-58
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Simple Linear Regression, fit and interpretations in R

One or more interactive elements has been excluded from this version of the text. You can view them

online here: https://uta.pressbooks.pub/oert-mpsfundamentals/?p=355#oembed-59

RELEVANCE TO TRANSPORTATION ENGINEERING COURSEWORK

This section explains the relevance of the regression models for trip generation, mode choice, traffic

flow-speed-density relationship, traffic safety, and appropriate sample size for spot speed study to

transportation engineering coursework.

REGRESSION MODELS FOR TRIP GENERATION

The trip generation step is the first of the four-step process for estimating travel demand for

infrastructure planning. It involves estimating the number of trips made to and from each

traffic analysis zone (TAZ). Trip generation models are estimated based on land use and trip-

making data. They use either linear regression or cross-tabulation of household characteristics.

Simple linear regression is described in the section above titled “Compute and Interpret Simple

Linear Regression Between Two Variables”, and the tools to conduct the linear regression are

discussed in “Data Analysis Tools (Spreadsheets and Basic Programming)”.

MODE CHOICE

Estimation of Mode Choice is also part of the four-step process for estimating travel demand.

It entails estimating the trip makers’ transportation mode (drive alone, walk, take public transit,

etc.) choices. The results of this step are the counts of trips categorized by mode. The most

popular mode choice model is the discrete choice, multinomial logit model. Hypothesis tests

are conducted for the estimated model parameters to assess whether they are “statistically

significant.” The section titled “Use Specific Significance Tests Including, Z-Test, T-Test (one

and two samples), Chi-Squared Test” of this chapter provides extensive information on

hypothesis testing.

TRAFFIC FLOW-SPEED-DENSITY RELATIONSHIP

Greenshield’s model is used to represent the traffic flow-speed-density relationship. Traffic

speed and traffic density (number of vehicles per unit mile) are collected to estimate a linear

regression model for speed as a function of density. “Compute and Interpret Simple Linear

Regression Between Two Variables” above provides information on simple linear regression.

“Data Analysis Tools (Spreadsheets and Basic Programming)” provides guidance for

implementing the linear regression technique using tools available in Microsoft Excel and the

programing language R.
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TRAFFIC SAFETY

Statistical analyses of traffic collisions are used to estimate traffic safety in roadway locations. A

variety of regression models, most of which are beyond the scope of this book, are implemented

to investigate the association between crashes and characteristics of the roadway locations.

Hypothesis tests are conducted for the estimated model parameters to assess whether they are

“statistically significant.” “Find Confidence Intervals for Parameter Estimates” above describes

the confidence intervals of the parameters, and “Use Specific Significance Tests Including,

Z-Test, T-Test (one and two samples), Chi-Squared Test” discusses the different types of

hypothesis tests. Programing language R includes statistical analysis toolkits or packages that

may be used to estimate the regression models for crash data.

APPROPRIATE SAMPLE SIZE FOR SPOT SPEED STUDY

Spot speed studies during relatively congestion-free durations are conducted to estimate mean

speed, modal speed, pace, standard deviation, and different percentile of speeds at a roadway

location. An adequate number of data points (i.e., the number of vehicle speeds recorded) are

required to ensure reliable results within an acceptable margin of error. “Estimate the Required

Sample Size for Testing” in this chapter discusses the approach to assessing the adequacy of

sample size.

Key Takeaways

• Estimating the total number of trips made to and from each traffic analysis zone (TAZ)is typically the

first step in the four-step travel demand modeling process. Simple linear regression models and the

tools (such as MS Excel and R) to estimate these models are used this step of the travel demand

modeling process. The independent variables for these models are the total number of trips with

demographic and employment data for the zones as independent variables.

• Hypothesis testing is used to determine the statistical significance of coefficients estimated for the

discrete choice multinomial models. Such models are used for the mode choice step of the travel

demand modeling process.

• Linear regression models are also used to estimate the relationship between speed and density on

uninterrupted flow facilities such as freeway segments.

• Regression models are also implemented to investigate the association between crashes and

characteristics of the roadway locations. Tools described in the chapter for linear regression may also

be used for estimating these models, including negative binomial regression models.

• Statistical analysis is also used to ensure that an adequate number of data points (i.e., the number of

vehicle speeds recorded) are used to obtain estimates of the mean, median, and 85th percentile of

speed within an acceptable margin of error in a spot speed study.
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